
Supervisory Control of Concurrent Discrete Event Systems
with Local Linear Temporal Logic Specifications

Ami Sakakibara1 and Toshimitsu Ushio2
1,2Graduate School of Engineering Science, Osaka University

Toyonaka, Osaka 560–8531, Japan
E-mail : 1sakakibara@hopf.sys.es.osaka-u.ac.jp,2ushio@sys.es.osaka-u.ac.jp

Abstract: We consider a concurrent discrete event system,
where each subsystem has its local specification described
by a linear temporal logic formula. Then, we propose an
algorithm to synthesize a supervisor for the concurrent sys-
tem such that each subsystem satisfies a given linear temporal
logic formula, and any subsystem never reaches a deadlock
state.

1. Introduction

Linear temporal logic (LTL) is often used to describe con-
trol specifications. For example, in robot motion planing,
temporal constraints such as mission completeness, deadlock
avoidance, safety properties are given by LTL formulas [2].
There have been several studies tackling control problems
with LTL requirements. Jiang and Kumar [1] design con-
trollers of discret event systems by an automata-based ap-
proach. We proposed a design method of a controller for a
quantitative discrete event system that satisfies a given LTL
constraint [3].

In practice, however, it is common to consider a number
of systems, rather than a single system. For example, some
lines in a factory consist of a series of more than two robots
running in cooperation. Then, it is required to control such
systems appropriately, i.e., we have to control the entire sys-
tem so that each subsystem will surely satisfy its given con-
trol specification. For a control problem of these systems, it
is common way to compose the systems themselves in the be-
ginning, and then control them under an LTL formula describ-
ing a global specification [4]. Unfortunately, this approach
has difficulty in adapting some changes among the systems or
the local specifications.

In this paper, we study control of a concurrent discrete
event system consisting ofN subsystems, where the local
control requirement is written by an LTL formula for each
subsystem. Our objective is to design a supervisor for the con-
current system ensuring that all subsystems satisfy their own
specifications and that any subsystem never enters a deadlock
state. The proposed design procedure is as follows. First,
for each LTL formula, we construct a generalized Rabin au-
tomaton that accepts all words satisfying the formula. Next,
we compute the composition of each subsystem and its corre-
sponding Rabin automaton. Then, we construct a tree which
unfolds the behaviors of the composite system. Finally, we
obtain a supervisor by eliminating illegal behaviors from the
tree.

2. Concurrent Discrete Event Systems
We consider a concurrent discrete event system (DES) con-
sisting of N subsystems modeled by automataGi (i =
1, 2, . . . , N):

Gi = (Xi,Σi, δi, xi,0, Li, APi),

whereXi is the set of states,Σi = Σi,c ∪ Σi,u is the set of
events and partitioned into sets of controllable and uncontrol-
lable events, a partial functionδi : Xi × Σi → Xi is a transi-
tion function,xi,0 ∈ Xi is the initial state,Li : Xi → 2APi is
a labeling function, andAPi is the set of atomic propositions.
We assume thatAPi ∩APj = ∅ if i ̸= j. The set of all active
events at statex ∈ Xi is denoted byΣi(x).

Behaviors of a systemGi are represented by sequences
consisting of states and events. An infinite sequence
x0σ1x1 . . . ∈ Xi(ΣiXi)

ω is called arun if , for any j ∈ N,
xj+1 = δi(xj , σj+1). A finite sequencex0σ1x1 . . . σnxn ∈
Xi(ΣiXi)

∗ is called ahistory if , for any j ∈ {0, 1, . . . , n −
1}, xj+1 = δi(xj , σj+1). A run or a history isinitialized if
it starts from the initial statexi,0. Runs(Gi) (resp.,His(Gi))
is the set of all initialized runs (resp., histories) in the plant.
The last state of each historyh = x0σ1x1 . . . xn is denoted
by last(h), that is, last(h) = xn . A statex ∈ Xi is dead-
lock if Σ(x) = ∅, i.e.,x has no outgoing transition. A history
x0σ1...xn is called a cycle ifx0 = xn. If there exist indices
i, j ∈ N for a historyh such thatc = xiσi+1 . . . xj is a cycle,
we say that the historyh contains the cyclec.

We assume that parts of the subsystems have some events
in common and such events are calledshared events. For each
eventσ, let In(σ) = {i : σ ∈ Σi}. Shared eventsσ can occur
only whenσ is enabled in all related subsystems, that is,

∀i ∈ In(σ), δi(xi, σ)!, (1)

whereδi(xi, σ)! means that there exists a transition fromxi

with σ. The concurrent system [5] of all subsystems is given
by

G = (X,Σ, δ, x0, L,AP),

where X = X1 × . . . × XN , Σ = ∪Ni=1Σi, x0 =
(x1,0, . . . , xN,0), AP = ∪Ni=1APi. The transition function
δ is defined as follows: for(x1, . . . , xN) ∈ X andσ ∈ Σ,

δ((x1, . . . , xN), σ) =

{
(x′

1, . . . , x
′
N) if Eq. (1) holds,

undefined otherwise,
(2)

wherex′
i = δ(xi, σ) if i ∈ In(σ); x′

i = xi otherwise.L :
X → 2AP is the labeling function of the entire system such
thatL((x1, . . . , xN)) = ∪Ni=1Li(xi).

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

125

Remark:We allow the existence of uncontrollable shared
events, unlike the assumption in [5] thatΣi,u ∩ Σj = ∅ for
anyi ̸= j.

3. Formulation
3.1 Linear temporal logic

In this paper, each subsystem has its local specification de-
scribed by a linear temporal logic (LTL) formula.

Syntax of LTL: Let AP be a set of atomic propositions.
An LTL formula overAP is defined as

φ ::= tt|ff |a |¬φ|φ1∧φ2 |φ1∨φ2 |Xφ | Fφ |Gφ | φ1Uφ2

wherea ∈ AP .
For an infinite wordw ∈ (2AP)ω, we denotew |= φ if

the wordw satisfies the formulaφ. The satisfaction relation
|= is formally defined in[6]. Intuitively, each operator can
be interpreted as follows:Xφ means thatφ holds along a
word starting at the next letter;Fφ says thatφ will be true in
the future;Gφ represents thatφ always holds along a word;
φ1Uφ2 implies that a word keeps to satisfyφ1 until φ2 turns
to be true.

We say a systemG satisfies an LTL formulaφ, denoted
G |= φ, if

∀ρ ∈ Runs(G),L(ρ) |= φ

whereρ = x0σ1x1 . . . andL(ρ) = L(x0)L(x1)
In this paper, we construct a generalized deterministic Ra-

bin automaton (GDRA) for an LTL formulaφ according to
the method proposed in [6]. Any LTL formulaφ can be trans-
lated into a GDRA of the form

R = (Q, δR, q0, Acc),

whereQ is the set of states,q0 is the initial state,δR :
Q × 2AP → Q is a transition function, andAcc = {Accj =
(E j ,F j) : j ∈ I} is the set of acceptance conditions with
an index setI, and the generalized Rabin pair(Ei ,Fi) ⊆
δR × 2δR . F j is of the formF j = {F j1, . . . , F jKj}. An
infinite wordw is accepted if, for somej ∈ I,

InfR(w) ∩ E j = ∅ ∧ 1 ≤ ∀k ≤ Kj , InfR(w) ∩ F jk ̸= ∅

where InfR(w) is the set of transitions that occur infinitely
often alongw. Note that Rabin conditions are not given by
pairs of state but those of transitions.

3.2 Supervisory control

The best-known theory for the control of DESs is supervisory
control, initiated by Ramadge and Wonham [7]. A supervisor
is defined as a mappingS : His (G) → Γ whereΓ = {γ ∈
2Σ : Σu ⊆ γ}, i.e., a supervisor observes the history from
the initial state to the current state and determines a control
pattern.

Let φi be an LTL formula that represents a specification
for a subsystemGi. Our objective is to synthesize a supervi-
sor for the concurrent systemG such that 1) each subsystem
satisfies a given LTL formula, and 2) any subsystem never
reaches a deadlock state.

4. Algorithm

4.1 Product automata

First, specification formulasφ1, . . . , φN are translated into
equivalent GDRAsR1, . . . , RN . To investigate the relation
between behaviors of a considered system and an LTL re-
quirement, we often take the product of the system and the
GDRA corresponding to the specification [3]. Formally, for
eachi, the composition of the subsystem and the GDRA is

Gi ⊗Ri = (Xi ×Qi,Σi, δ
⊗
i , x′

i,0, Acc′i),

whereXi × Qi is the set of states,δ⊗i : (Xi × Qi) × Σi →
(Xi ×Qi) is the transition defined as

δ⊗i ((x, q), σ) = (δi(x, σ), δR,i(q, Li(x)))

for each (x, q) ∈ Xi × Qi and σ ∈ Σ, x′
i,0 :=

(xi,0, δR,i(qi,0, Li(xi,0))) is the initial state,Acc′i is the set
of acceptance conditions.

The desired runs are accepted by the automatonG1 ⊗
R1∥ . . . ∥GN ⊗ RN . It is necessary, therefore, to find
a control action through which all acceptance conditions
Acc′1, . . . , Acc′N are satisfied in the product automata.
4.2 Searching tree

Algorithm 1 briefly describes how to construct a searching
tree. From the subsystemsG1, . . . , GN and the GDRAs
R1, . . . , RN , we build the concurrent system but dynamically
writes down its behaviors in a tree structure. The output of
the algorithm isT = (V,E), whereV is the set of nodes and
E is the set of edges.

To represent which conditions have been satisfied, an
N × M matrix is introduced for each node, denoted by
acc(v) =

(
accvij

)
, whereM = max1≤i≤N |Ii |. All elements

are initialized with0 andaccvij turns to 1 if theAccji , thej-th
acceptance condition ofRi, is satisfied.

For each nodev, let cycle(v) be the maximal cyclic subse-
quence ofvhis. We sayv is accepted byRj if it holds that

cycle(v) ∩ E j = ∅ ∧ ∀F ′ ∈ F j , cycle(v) ∩ F ′ ̸= ∅ (3)

sincecycle(v) is the subsequence ofvhis that occurs infinitely
often. If Eq. (3) holds for allj ∈ I, then it is guaranteed
that the entire system meets all of the acceptance conditions
throughcycle(v). When checking the acceptance conditions,
the matrixacc(v) plays an important role. Indeed,acc(v)
reflects the evaluation of Eq. (3).

The main part of Algorithm 1 works as follows. From
the initial state of the concurrent system, namelyx0 =
(x1,0, . . . , xN,0), the algorithm writes down the possible his-
tories ofG by functionExpand. The label of nodev, de-
notedvhis, keeps the history from the initial state to the cur-
rent state of the entire system. Whenever a cycle is detected,
i.e., the current sequence ends with a cycle, the algorithm ex-
amines whether the current node is accepted or not. Ifv is
accepted, then we add it toVL, which is the set of accepted
leaf nodes; otherwise, we consider the next conditional execu-
tion. If the currently detected cycle contains bad transitions,

126

Algorithm 1 Construction of a searching tree
Require: G1, . . . , GN , R1, . . . , RN

Let v0 = (x1,0, . . . , xN,0), vhis = v0, and acc(v0) =
(0, . . . ,0). Putv into V andU . Let Vc, Vu, VL, andV¬φ

be empty sets.
while U ̸= ∅ do

for all v ∈ U do
LetU ′ = ∅.
if the current nodev ends with a cyclethen

Check the acceptance conditions byIsAcc(v)
if ∀i,∃j, accvij = 1 (v is accepted)then

Putv into VL (labelv as a leaf node).
else

if ∃i,∀j, accvij = −∞ or Eq. (4) holdsthen
Putv into V¬φ (labelv as a bad node).

end if
end if

else
for all p ∈ {c, u} do

if Σp(last(v)) ̸=∅ and Eq. (4) does not holdthen
U ′ ← Expand(v, p)

end if
end for

end if
end for
UpdateU byU ′.

end while
return T = (V,E)

function IsAcc(v)

Let c be the cycle that is currently detected.
if c contains a transition that belongs toF j

i then
Let accvij = 1.

end if
if c contains a transition that belongs toE ji then

Let accvij = −∞.
end if

function Expand(v, p)

Create a new nodevp ∈ Vp.
Let Ũ be an empty set and(v, πp, v

p) ∈ E.
for all σ ∈ Σp(last(v)) do

if vis(v, σ) = 0 then
Create a new nodeu according to the transition rule
(Eq. (2)).uhis = vhisσδ(last(vhis), σ). Letacc(u) =
acc(v) and(vp, σ, u) ∈ E. Putu into V andŨ .

end if
end for
return Ũ

function vis(v, σ)

if ∃(v′, σ, v′′) ∈ E s.t. last(v) = last(v ′) and v′ is an
ancestor ofv then

return 1
else

return 0
end if

further search will result in nothing. Stated differently, this
suffix itself violates at least one of the acceptance conditions.
Then,v is added toV¬φ, which means thatv is labeled as a
bad node. Nodes inVL andV¬φ will not be expanded any
more. All of the leaf nodes correspond to runs ofGi that end
with cycles. It is noted that every transition in such cyclic be-
haviors will occur infinitely often. Hence, we need to analyze
the cycles and thus we seek cyclic runs.

If the suffix of the current node does not correspond to a
cyclic path, then this node undergoes the expansion process.
The expansion process will continue until a cycle is detected.
When the first cycle is found at the current nodev, exam-
ined here is whether the system satisfies the specification or
not. If the system has not fulfilled the acceptance conditions
yet, the algorithm continues to search. Otherwise, we pick up
one of the successors oflast(vhis) to be investigated in the
next iteration. However, at the next time we pick up one of
the successors ofv, we need to avoid tracing the same path
again. To ensure this, functionvis(v, σ) indicates if the pair
of statev and the eventσ was already searched. Possible op-
tions to be tested in the next step will be restricted to those
which have not been visited yet, i.e., the node corresponding
to δ(last(vhis), σ) with vis(v, σ) = 0. If we have

∧σ∈Σ(v)vis(v, σ) = 1, (4)

then there is no chance to obtain a preferable path fromv. In
this case, therefore, the expansion also ends.

Moreover, it is obvious by functionIsAcc, that

∀i,∃j, accvij = 1

if v is accepted. To the contrary, the system violates the for-
mula if at least one acceptance condition is refuted, i.e.,

∃i,∀j, accvij = −∞.

In this case, further transitions from the current state will
never influence the acceptance in light of the acceptance con-
ditions.

4.3 Synthesis of a supervisor

The leaf nodes inV¬φ correspond to the behaviors violating
the acceptance conditions. By eliminating edges that lead to
such bad nodes from the output tree of Algorithm 1, we obtain
a supervisor.

Algorithm 2 roughly explains the procedure of designing
a supervisor. LetV ′ be the output set ofV after the oper-
ationselim in the for loop. The outcome has the following
properties.

Property 1For any nodev in V ′ ∩ VL, Eq. (3) holds.
Proof: From the operation rule, all nodes violating Eq. (3)

are eliminated since they belong toV¬φ. Consequently, the
remaining nodes are those satisfying Eq. (3).

Property 2For any nodev in V ′ ∩ VL,

1 ≤ ∀i ≤ N, cycle(v) ∩ δi ̸= ∅.

Proof: From Algorithm 1, nodev does not belong toVL

whenever∃i,∀j, accvij ̸= 1. If there exists an indexi such that

127

Algorithm 2 Synthesis of a supervisor

Require: The output of Algorithm 1T = (V,E)
for all v ∈ V¬φ do
elim(v)

end for
if V = ∅ then

return There exists no supervisor.
else

return Construct a supervisor.
end if

function elim(v)

if pre(v) ∈ Vc ∧ pre(v) has another successorthen
Remove(pre(v), σ, v) fromE, andv from V

else
elim(pre(v))

end if

subsystemGi reaches a deadlock state,accvij remains0 for
any j. Moreover, they are eliminated by the operationelim.
Then, there does not exist a node inV ′ with a cyclic path
through which at least one subsystem remains suspended.

If V ′ = ∅, then there does not exist a supervisor that meets
our objective. Otherwise, we construct a supervisor as fol-
lows. For nodes inVL \V¬φ, we reconnect appropriate nodes
so that the corresponding cycles are achieved. A supervisor
for G is implemented by a pair of an automaton and a map-
pingS = ((XS ,Σ , δS , xS ,0),S), whereXS is the set of the
states representing the supervised histories,Σ is the set of
events,δS is the transition function,xS,0 is the initial state
with xS,0 = x0, andS : His(G)→ Γ is given by

S(h) = {σ ∈ Σc : ∃v, v′ ∈ V ′ s.t.

vhis = h, hσlast(v ′his) = v ′his , and(v , σ, v ′) ∈ E ′}.

From Properties 1 and 2, the resulting supervisor meets our
objective:S controls the entire systemG so that 1) each sub-
system satisfies a given LTL formula, and 2) any subsystem
never reaches a deadlock state.

5. Example
We consider a control problem of a system consisting of

two robot arms, where Arm 1 (resp., Arm 2) can execute
Tasks 1 and 3 (resp., Tasks 2 and 3) [8]. Here, the control
objective is to realize that 1) Arm 1 carries on Tasks 1 and 3
(infinitely often), and 2) Arm 2 executes Task 3, in coopera-
tion with Arm 1, while avoiding Task 2. These local specifi-
cations are written by the following LTL formulas:

φ1 = GFt1 ∧GFt3 , φ2 = G¬t2 ∧GFt3 ,

whereti represents Taski for i = 1, 2, 3.
From the resulting supervisor, shown in Fig. 2 it is ensured

that, whenevera2 is active, the supervisor disablesa2 since it
leads Arm 2 to Task 2.

6. Conclusion
We considered a concurrent discrete event system con-

sisting ofN subsystems, where each subsystem has its lo-

Figure 1. Automata representing the considered subsystems.
Σc,1 = {a1, b1},Σu,1 = {c1, c},Σ2,c = {a2, b2}, and
Σ2,u = {c2, c}. c is the only shared event. The lower
label of each state stands for the atomic proposition that
holds there.

Figure 2. The resulting supervisor.

cal specification described by a linear temporal logic for-
mula. We proposed an algorithm to synthesize a supervisor
for the concurrent system such that each subsystem satisfies a
given linear temporal logic formula, and any subsystem never
reaches a deadlock state.

Future work includes the extension to the work where a
global specification is also given in addition to local ones.
AcknowledgementThis research was supported in part by
JSPS KAKENHI Grant Number 24360164.

References

[1] S. Jiang and R. Kumar,SIAM J. Control Optim.,vol. 44,
no. 6, pp. 2079–2103, 2006.

[2] X. Ding et al., IEEE Trans. Automat. Contr.,vol. 59, no.
5, pp. 12441257, May 2014.

[3] A. Sakakibaraet al., in Proc. 20th IEEE ETFA, 2015.
[4] T. Wongpiromsarn et al., IEEE Int. Conf. In-

tell. Robot. Syst.,pp. 229–236, Mar. 2012.
[5] Y. Willner and M. Heymann,Int. J. Control, vol. 54, no. 5,

pp. 1143–1169, 1991.
[6] J. Esparzaet al., submitted for publication, 2015.
[7] P. J. Ramadge and W. M. Wonham,SIAM J. Control and

Optimization, vol. 25, no. 1, pp. 206–230, 1987.
[8] S. Takai and T. Ushio, inProc. 7th Int. Work. Discret.

Event Syst., vol. E87-A, no. 4, pp. 181–186, 2004.

128

