The 31st International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2016)

Supervisory Control of Concurrent Discrete Event Systems
with Local Linear Temporal Logic Specifications

Ami Sakakibara and Toshimitsu Ushio
L2Graduate School of Engineering Science, Osaka University
Toyonaka, Osaka 560-8531, Japan
E-mail : 'sakakibara@hopf.sys.es.osaka-u.aélshio@sys.es.osaka-u.ac.jp

Abstract: We consider a concurrent discrete event system, 2. Concurrent Discrete Event Systems

where each subsystem has its local specification describewe consider a concurrent discrete event system (DES) con-

by a linear temporal logic formula. Then, we propose ar%isting of N subsystems modeled by automata (i —
algorithm to synthesize a supervisor for the concurrent sysy F N):

tem such that each subsystem satisfies a given linear temporal
logic formula, and any subsystem never reaches a deadlock Gi = (X;,%4,0i, %0, Li, AP;),

state.
where X is the set of states); = 3, . U %, ,, is the set of

events and partitioned into sets of controllable and uncontrol-
lable events, a partial functiah : X; x ¥; — X, is a transi-
1. Introduction tion function,z; o € X; is the initial state; : X; — 247 is
a labeling function, and\ P; is the set of atomic propositions.
Linear temporal logic (LTL) is often used to describe con-We assume thal P, N AP; = () if i # j. The set of all active
trol specifications. For example, in robot motion planing,events at state € X; is denoted by:; (z).
temporal constraints such as mission completeness, deadlockBehaviors of a systentr; are represented by sequences
avoidance, safety properties are given by LTL formulas [2]consisting of states and events. An infinite sequence
There have been several studies tackling control problem®&oiz ... € X;(2;X;)“ is called arun if , for any j € N,
with LTL requirements. Jiang and Kumar [1] design con-Zj+1 = 6i(z;,0;+1). A finite sequenceryoi 21 ... onzn, €
trollers of discret event systems by an automata-based api(¥:X;)* is called ahistoryif , forany j € {0,1,...,n —
proach. We proposed a design method of a controller for &}, zj+1 = di(z;,0541). Arun or a history isnitialized if
quantitative discrete event system that satisfies a given LTit starts from the initial state; o. Runs(G;) (resp.,His(G;))
constraint [3]. is the set of all initialized runs (resp., histories) in the plant.

. . . The last state of each histoty = xz¢o121 ...z, is denoted
In practice, however, it is common to consider a numbeb

X n@/ last(h), that is,last(h) = z,,. A statex € X; is dead-
of systems, rather than a single system. For example, SOM&y it v3(;) — ¢, i.e., = has no outgoing transition. A history
lines in a factory consist of a series of more than two robot§E

o . T . 001...Zy 1S called a cycle ity = z,,. If there exist indices
running in cooperation. Then, it is required to control such; j € N for a historyh such that: = ;0141 ...z, is a cycle
) — 41U s ’

systems appropriately, i.e., we have to control the entire SYSie say that the history contains the cycle
tem so that each subsystem will surely satisfy its given con- \va"assume that parts of the subsystems have some events

trol specification. For a control problem of these systems, if, common and such events are calidsdred eventsFor each
is common way to compose the systems themselves in the b@\'/enta letIn(o) = {i : o € ¥;}. Shared events can occur
ginning, and then control them under an LTL formula describ- ; .

, oo) only whene is enabled in all related subsystems, that is,
ing a global specification [4]. Unfortunately, this approach
has difficulty in adapting some changes among the systems or Vi € In(o),0;(x;,0)!, (1)

the local specifications. . .
whered;(z;, o)! means that there exists a transition fram

In this paper, we study control of a concurrent discretyith o. The concurrent system [5] of all subsystems is given
event system consisting @¥ subsystems, where the local p

control requirement is written by an LTL formula for each G =(X,%,8,z0,L, AP),

subsystem. Our objective is to design a supervisor for the con- N

current system ensuring that all subsystems satisfy their o here X = X x ... i~ Xy, % = Uisy X, 20 =
specifications and that any subsystem never enters a deadlo¢k 07 - - - 1Zn0), AP = Ui, AP;. The transition function

state. The proposed design procedure is as follows. First,'s defined as follows: fofz;, ...,) € X ando € X,
for each LTL formula, we construct a generalized Rabin au- (zh,...,2'y) ifEq. (1) holds,
tomaton that accepts all words satisfying the formula. Next, 0((z1, ..., zn),0) = { undefined otherwise,

we compute the composition of each subsystem and its corre-)

sponding Rabin automaton. Then, we construct a tree which

unfolds the behaviors of the composite system. Finally, wevherex!, = §(z;,0) if i € In(o); «; = x; otherwise.L :
obtain a supervisor by eliminating illegal behaviors from theX — 247 is the labeling function of the entire system such
tree. that L((z1,...,zN)) = UN, Li(x;).

125

Remark:We allow the existence of uncontrollable shared 4. Algorithm
events, unlike the assumption in [5] thaf, N3, = 0 for
anyi # j. 4.1 Product automata

3. Formulation First, specification formulag, ..., ¢y are translated into
equivalent GDRASR,, ..., Ry. To investigate the relation
between behaviors of a considered system and an LTL re-
In this paper, each subsystem has its local specification depirement, we often take the product of the system and the
scribed by a linear temporal logic (LTL) formula. GDRA corresponding to the specification [3]. Formally, for

Syntax of LTL: Let AP be a set of atomic propositions. eachi, the composition of the subsystem and the GDRA is
An LTL formula over AP is defined as

3.1 Linear temporal logic

Gi ® Ry = (X; x Q,%4,07, 2} , Accy),
pu=tt[fal~p|p1Ap2 |1V | Xp [Fo | Go | 91U _
whereX; x Q; is the set of states,” : (X; x Q;) x X; —

wherea € AP _ (X; x Q;) is the transition defined as
For an infinite wordw € (247)~, we denotew = ¢ if
the wordw satisfies the formula. The satisfaction relation 62((x,q),0) = (0;(z,0),0Rr.i(q, Li(x)))

k= is formally defined in[6]. Intuitively, each operator can

be interpreted as followsX¢ means thaty holds along a for each (z,¢) € X x Q; ando € %, 2, =
word starting at the next letteFp says thatp will be true in (%0, 0r.i(¢i,0, Li(wio))) is the initial state,Acc; is the set
the future;G represents thap always holds along a word; ©Of acceptance conditions.

©1Ugp, implies that a word keeps to satisfy until ¢, turns The desired runs are accepted by the autométorz
to be true. Ri||... |Gy ® Ryn. It is necessary, therefore, to find
We say a systend satisfies an LTL formula, denoted @ control action through which all acceptance conditions
G E o, if Acdl, ..., Accy are satisfied in the product automata.
Vp € Runs(G), L(p) = ¢ 4.2 Searching tree
wherep = zgo12; ... andL(p) = L(zo)L(z1) Algorithm 1 briefly describes how to construct a searching
In this paper, we construct a generalized deterministic Ral€€. From the subsystents,,..., Gy and the GDRAs
bin automaton (GDRA) for an LTL formula according to Ry, ..., Ry, we build the concurrent system but dynamically
the method proposed in [6]. Any LTL formulacan be trans- writes down its behaviors in a tree structure. The output of
lated into a GDRA of the form the algorithm isT" = (V, E), whereV is the set of nodes and
FE'is the set of edges.
R = (Q,0r, qo, Acc), To represent which conditions have been satisfied, an
N x M matrix is introduced for each node, denoted by
where () is the set of statesy, is the initial state,ir : acc(v) = (acc;’j), whereM = max;<;<n |Z;|. All elements
N . " . <i< ,
Q x 27 — Qs a transition function, andce = {Acc; = gre initialized with0 andacc?; turns to 1 if thedee!, the j-th
(& ,']-‘J) : j € I} is the set of acceptance cond|t|ons With 5cceptance condition dt;, is satisfied.
an index set, and the generalized Rabin pd¥;, F;) < For each node, letcycle(v) be the maximal cyclic subse-

0r x 2°r. Fis of the formF/ = {F/',... F/%i}. An gquence ofi"i*. We sayv is accepted byr; if it holds that
infinite wordw is accepted if, for somg¢ € 7,

_ , cycle(v)NE =0 A VF € Flocycle(v)NF #0 (3)
Infr(w) NE =P A1 <Vk < K, Infr(w) N F* £
sincecycle(v) is the subsequence of* that occurs infinitely
wherelnfg(w) is the set of transitions that occur infinitely often. If Eq. (3) holds for allj € Z, then it is guaranteed
often alongw. Note that Rabin conditions are not given by that the entire system meets all of the acceptance conditions
pairs of state but those of transitions. throughcycle(v). When checking the acceptance conditions,
the matrixacc(v) plays an important role. Indeed¢c(v)
reflects the evaluation of Eq. (3).
The best-known theory for the control of DESs is supervisory The main part of Algorithm 1 works as follows. From
control, initiated by Ramadge and Wonham [7]. A supervisothe initial state of the concurrent system, namely =
is defined as a mapping : His(G) — T wherel' = {v € (x1,0,---,2N,0), the algorithm writes down the possible his-
2* . ¥, C v}, i.e., a supervisor observes the history fromtories of G by function Expand. The label of nodes, de-
the initial state to the current state and determines a controlotedv”**, keeps the history from the initial state to the cur-
pattern. rent state of the entire system. Whenever a cycle is detected,
Let p; be an LTL formula that represents a specificationi.e., the current sequence ends with a cycle, the algorithm ex-
for a subsystends;. Our objective is to synthesize a supervi- amines whether the current node is accepted or not. isf
sor for the concurrent syste@ such that 1) each subsystem accepted, then we add it i, which is the set of accepted
satisfies a given LTL formula, and 2) any subsystem neveleaf nodes; otherwise, we consider the next conditional execu-
reaches a deadlock state. tion. If the currently detected cycle contains bad transitions,

3.2 Supervisory control

126

Algorithm 1 Construction of a searching tree
Require: G1,...,GN,R1,..., Ry
Let vo (z1.0,..-,7N,0), V" = v, andacc(vg) =
(0,...,0). PutvintoV andU. LetV,, V,, Vi, andV_,
be empty sets.
while U # 0 do
forall v € U do
LetU’ = 0.
if the current node ends with a cycléhen
Check the acceptance conditions byAcc(v)
if Vi, 3j, acci; = 1 (v is acceptedihen
Putwv into V7, (labelv as a leaf node).
else
if 34, Vj, acci; = —oo or Eq. (4) holdghen
Putv into V-, (labelv as a bad node).
end if
end if
else
forall p € {c,u} do
if ¥, (last(v)) # 0 and Eq. (4) does not holtien
U’ < Ezxzpand(v,p)
end if
end for
end if
end for
UpdateU by U’.
end while
return T = (V, E)

function IsAcc(v)

Let ¢ be the cycle that is currently detected.
if ¢ contains a transition that belongsg then

Letacc); = 1.

end if _

if ¢ contains a transition that belongsdp then
Letacc); = —oo.

end if

function Expand(v, p)
Create a new node” € V/,.
Let U be an empty set an@, 7, v") € E.
forall o € ¥,(last(v)) do
if vis(v,0) = 0then
Create a new node according to the transition rule
(Eq. (2)).u"** = v"$ o (last(v), o). Letace(u) =
ace(v) and(v?, o, u) € E. Putu into V andU.
end if
end for

return U

function vis(v, o)
if 3(v',0,v") € E s.t. last(v) = last(v') andv’ is an
ancestor ob) then
return 1
else
return 0
end if

127

further search will result in nothing. Stated differently, this
suffix itself violates at least one of the acceptance conditions.
Then,v is added td/-,,, which means that is labeled as a
bad node. Nodes iz, and V-, will not be expanded any
more. All of the leaf nodes correspond to runghfthat end
with cycles. It is noted that every transition in such cyclic be-
haviors will occur infinitely often. Hence, we need to analyze
the cycles and thus we seek cyclic runs.

If the suffix of the current node does not correspond to a
cyclic path, then this node undergoes the expansion process.
The expansion process will continue until a cycle is detected.
When the first cycle is found at the current nodeexam-
ined here is whether the system satisfies the specification or
not. If the system has not fulfilled the acceptance conditions
yet, the algorithm continues to search. Otherwise, we pick up
one of the successors bfst(v"**) to be investigated in the
next iteration. However, at the next time we pick up one of
the successors af, we need to avoid tracing the same path
again. To ensure this, functiaris(v, o) indicates if the pair
of statev and the event was already searched. Possible op-
tions to be tested in the next step will be restricted to those
which have not been visited yet, i.e., the node corresponding
to §(last(v"'s), o) with vis(v, o) = 0. If we have

(4)

then there is no chance to obtain a preferable path from
this case, therefore, the expansion also ends.
Moreover, it is obvious by functiotis Acc, that

Noes(v)vis(v, o) = 1,

Vi, 3j,acci; =1

if v is accepted. To the contrary, the system violates the for-
mula if at least one acceptance condition is refuted, i.e.,

3i,Vj, acci; = —oo.

In this case, further transitions from the current state will
never influence the acceptance in light of the acceptance con-
ditions.

4.3 Synthesis of a supervisor

The leaf nodes iV, correspond to the behaviors violating
the acceptance conditions. By eliminating edges that lead to
such bad nodes from the output tree of Algorithm 1, we obtain
a supervisor.

Algorithm 2 roughly explains the procedure of designing
a supervisor. LeV’ be the output set oF after the oper-
ationselim in the for loop. The outcome has the following
properties.

Property 1For any node in V' N Vg, Eq. (3) holds.

Proof: From the operation rule, all nodes violating Eq. (3)
are eliminated since they belong ¥o.,. Consequently, the
remaining nodes are those satisfying Eq. (3).

Property 2For any nodey in V' NV,

1 <Vi < N,cycle(v) Né; # 0.

Proof: From Algorithm 1, nodey does not belong td7,
wheneveti, Vj, accy; # 1. Ifthere exists an indexsuch that

Algorithm 2 Synthesis of a supervisor

Require: The output of Algorithm 1" = (V, E)
forall v € V-, do

elim(v)
end for
if V=0 then
return There exists no supervisor. Figure 1. Automata representing the considered subsystems.
else ECJ = {al,bl},Eu,l = {Cl,C},Egyc = {ag,bg}, and
return Construct a supervisor. You = {c2,c}. cis the only shared event. The lower
end if label of each state stands for the atomic proposition that
function elim(v) holds there.

if pre(v) € V. A pre(v) has another succesgbien
Remove(pre(v), o,v) from E, andv from V/

else
elim(pre(v))
end if @,
b1 al

subsystent; reaches a deadlock state;c;; remains0 for O O
anyj. Moreover, they are eliminated by the operatigim. o o
Then, there does not exist a nodelith with a cyclic path 1 1
through which at least one subsystem remains suspended. ‘ ‘

If V' = (), then there does not exist a supervisor that meets | b1
our objective. Otherwise, we construct a supervisor as fol- c ol
lows. For nodes iV, \ V-, we reconnect appropriate nodes ‘ ‘
so that the corresponding cycles are achieved. A supervisor
for G is implemented by a pair of an automaton and a map- Figure 2. The resulting supervisor.

pingS = ((Xg, X, ds,25.0),5), whereXg is the set of the
states representing the supervised historiess the set of o i i)
events,ds is the transition functiong s is the initial state @l SPecification described by a linear temporal logic for-
with 250 = o, ands : His(G) — I"is given by mula. We proposed an algorithm to synthesize a supervisor
' for the concurrent system such that each subsystem satisfies a
S(h)={oe€X.: I, €V'st given linear temporal logic formula, and any subsystem never
s — h,holast(v’h“) = o™ and(v,0,v') € E'Y. reaches a deadlock state. _
Future work includes the extension to the work where a

From Properties 1 and 2, the resulting supervisor meets oylobal specification is also given in addition to local ones.

objective:S controls the entire systefi so that 1) each sub- AcknowledgementThis research was supported in part by

system satisfies a given LTL formula, and 2) any subsystemmsps KAKENHI Grant Number 24360164.
never reaches a deadlock state.
References

5. Example : :
P [1] S. Jiang and R. Kuma§IAM J. Control Optim.yol. 44,
We consider a control problem of a system consisting of no. 6, pp. 2079-2103, 2006.

two robot arms, where Arm 1 (resp., Arm 2) can executg2] X. Ding et al., IEEE Trans. Automat. Conteol. 59, no.
Tasks 1 and 3 (resp., Tasks 2 and 3) [8]. Here, the control 5 pp 12441257, May 2014.

objective is to realize that 1) Arm 1 carries on Tasks 1 and $3] A. Sakakibaraet al, in Proc. 20th IEEE ETFA2015.

(infinitely often), and 2) Arm 2 executes Task 3, in coopera{4] T. Wongpiromsarnet al., IEEE Int. Conf. In-
tion with Arm 1, while avoiding Task 2. These local specifi- te|l. Robot. Systpp. 229-236, Mar. 2012.
cations are written by the following LTL formulas: [5] Y. Willner and M. Heymannint. J. Contro| vol. 54, no. 5,
p1 = GFt; ANGFt3, ¢ = G-ts A GFtg, pp. 1143-1169, 1991 o
[6] J. Esparza&t al., submitted for publication, 2015.
wheret; represents Taskfor i = 1,2, 3. 7] P.J. Ramadge and W. M. WonhaB8iIAM J. Control and

From the resulting supervisor, shown in Fig. 2 it is ensure Optimization vol. 25, no. 1, pp. 206—230, 1987.
that, wheneveu, is active, the supervisor disables since it [8] S. Takai and T. Ushio, ifProc. 7th Int. Work. Discret.
leads Arm 2 to Task 2. Event Systvol. E87-A, no. 4, pp. 181-186, 2004.

6. Conclusion

We considered a concurrent discrete event system con-
sisting of N subsystems, where each subsystem has its lo-

128

