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Abstract—We analyse the limitations of an ideal zero-thickness
sheet model, based on electromagnetic susceptibility tensors,
to synthesize a sub-wavelength thick metasurface. First, the
ideal zero-thickness model is used to synthesize an absorbing
metasurface in terms of its susceptibilities. Then, we show the
discrepancies between the response of the zero-thickness metasur-
face and the response of a sub-wavelength thin slab possessing the
same electromagnetic susceptibilities. Finally, we derive higher
order continuity conditions to provide a more rigorous treatment
of the problem of sub-wavelength thick metasurfaces.

I. INTRODUCTION

Metasurfaces [1]–[3] are dimensional reductions of volume
metamaterials and functional extensions of frequency selective
surfaces [4]. They are composed of two-dimensional arrays of
sub-wavelength scattering particles engineered in such a man-
ner that they transform incident waves into desired reflected
and transmitted waves. Compared to volume metamaterials,
metasurfaces offer the advantage of being lighter, easier to
fabricate and less lossy due to their reduced dimensionality,
while compared to frequency selective surfaces, they provide
greater flexibility and functionalities.

In order to design and implement metasurfaces, it is con-
venient to consider metasurfaces as zero-thickness interfaces
rather than sub-wavelength thick slabs because of the higher
complexity in the resolution of multiple interface problems.
Based on this consideration, several synthesis techniques
have been developed [5]–[8]. These techniques provide the
metasurface constitutive parameters for the specified incident,
reflected and transmitted fields. Even though these constitutive
parameters only apply to zero-thickness interfaces, they can be
used to describe a sub-wavelength thick metasurface.

In this work, we analyse the discrepancies between the
ideal zero-thickness model and the response of a sub-
wavelength thick metasurface. Moreover, we derive boundary
conditions of higher order that describe more accurately meta-
surfaces with substantial sub-wavelength thickness.

II. METASURFACE SYNTHESIS TECHNIQUE

A zero-thickness metasurface, introducing discontinuities
in the electromagnetic field, can be rigorously described us-
ing distribution theory, as demonstrated by Idemen [9]. The

generalized sheet transition conditions (GSTCs) are rigorous
boundary conditions for zero-thickness interfaces first derived
by Idemen and later applied to metasurfaces by Kuester et
al. [1]. For a metasurface lying at z “ 0 in the x ´ y plane,
they may be written as

ẑ ˆ∆H “ jωP‖ ´ ẑ ˆ∇‖Mz, (1a)

∆E ˆ ẑ “ jωµM‖ ´∇‖

ˆ

Pz

ε

˙

ˆ ẑ, (1b)

ẑ ¨∆D “ ´∇ ¨ P‖, (1c)
ẑ ¨∆B “ ´µ∇ ¨M‖, (1d)

where P and M are the electric and magnetic polarization
densities, respectively, and are given in terms of the arithmetic
average of the fields on both sides of the metasurface. The
operator ∆ stands for the difference of the fields between both
sides of the metasurface.

Relations (1a) and (1b) contain spatial derivatives applying
on the normal components of P and M . However, we will
consider here metasurfaces only possessing in plane polar-
ization densities, since such metasurfaces admit closed-form
solutions of their susceptibilities [5]. In this case, using the
general definitions of P and M , relations (1a) and (1b) reduce
to

ẑ ˆ∆H “ jωεχeeEav ` jkχemHav, (2a)
∆E ˆ ẑ “ jωµχmmHav ` jkχmeEav, (2b)

where χee, χmm, χem and χme are, respectively, the electric,
magnetic, electromagnetic and magnetoelectric susceptibility
tensors. The subscript “av” denotes the arithmetic average of
the fields.

III. DESCRIPTION OF THE PROBLEM

To illustrate the synthesis procedure and analyze the
response of a sub-wavelength thick metasurface, a simple
electromagnetic transformation is considered here, while more
complex transformations will be addressed elsewhere. It con-
sists in an absorbing metasurface that reduces the amplitude
of a normally incident plane wave, as illustrated in Fig. 1.
The reflected wave is specified to be zero (Er “ 0) and
the normally transmitted plane wave to exhibit a transmission
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coefficient T . The specified incident and transmitted electric
fields are x-polarized and respectively given by Ei “ e´jkzx̂
and Et “ Te´jkzx̂, where 0 ď |T | ď 1. In such a
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Fig. 1: Numerically simulated (COMSOL) RepExq field when
a normally incident plane wave is impinging, from left to right,
on a metasurface of thickness d “ λ{100. The reflection-
less metasurface is synthesize to reduce the amplitude of the
incident wave by 50%.

simple transformation, the parameters χme and χem vanish
and the susceptibilities χee and χmm are diagonal tensors
since no rotation of polarization is required [5]. Finally, after
substitution and simplification, relations (2a) and (2b) yield
the following electric and magnetic susceptibilities

χ “ χxx
ee “ χyy

mm “
2j

k

pT ´ 1q
pT ` 1q . (3)

The susceptibilities in (3) can be easily converted into the
electric permittivity, εr “ 1 ` χxx

ee {d and the magnetic
permeability, µr “ 1 ` χyy

mm{d, where d is the thickness of
the metasurface [9]. Dividing by d dilutes the effect of the
susceptibilities over the thickness of the metasurface. This is a
valid approximation as long as d remains sub-wavelength [9].

Electromagnetic simulations are performed using COMSOL
for different values of T and the results are reported in Fig. 2.
As can be seen in the figure, for T ą 0.5 the simulated
transmission is in good agreement with the specification. In
contrast, for T ă 0.5 a discrepancy appears, that increases as T
is reduced to 0. A more detailed analysis of these discrepancies
will be provided elsewhere.

One possibility, to reduce the aforementioned discrepan-
cies, is to derive boundary conditions of higher orders than the
GSTCs. As they stand in (1), the GSTCs only account for a ze-
roth order discontinuity, meaning that only the discontinuities
of the fields are taken into account but not the discontinuities of
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Fig. 2: Illustration of the discrepancies between the speci-
fied transmission (solid line) and the numerically simulated
transmission (dashed line) from the metasurface of thickness
d “ λ{100.

the derivatives of the fields. Higher order boundary conditions
that take into considerations the first derivative of the fields
may therefore yield more accurate results. The developments
of such boundary conditions are discussed in the following
section.

IV. DERIVATION OF HIGHER ORDER GSTCS

The GSTCs (1) can be derived by considering that all
quantities (electric field, magnetic field, etc.) in Maxwell
equations can be expressed, at the position of the metasurface,
as [9]

fpzq “ tfpzqu `
N
ÿ

k“0

fkδ
pkqpzq, (4)

where tfpzqu is the regular part of fpzq and
řN

k“0 fkδ
pkqpzq is

a Taylor-type series given in terms of the kth derivative of the
Dirac delta distribution. After substitution of (4) into Maxwell
equations, two sets of equations are found, as shown in [5],
[9]. The boundary conditions, for k “ 0, are

ẑ ˆ∆H `∇‖ ˆH0 “ jωD0, (5a)

ẑ ˆ∆E `∇‖ ˆE0 “ ´jωB0, (5b)

ẑ ¨∆D `∇‖ ¨D0 “ 0, (5c)

ẑ ¨∆B `∇‖ ¨B0 “ 0, (5d)

with the compatibility relations for k ě 1

ẑ ˆHk´1 `∇‖ ˆHk “ jωDk, (6a)

ẑ ˆEk´1 `∇‖ ˆEk “ ´jωBk, (6b)
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ẑ ¨Dk´1 `∇‖ ¨Dk “ 0, (6c)

ẑ ¨Bk´1 `∇‖ ¨Bk “ 0. (6d)

The GSTCs are obtained by assuming that all terms are zero
for k ě 1. In that case, the electric field would be expressed as
Epzq “ tEpzqu`E0pzqδpzq which takes into account only the
discontinuity of the field but not of its derivatives. To obtain
boundary conditions that take into account the first derivative
of the fields, the series in (4) must be truncated at k “ 2. Then
by recursively solving relations (6), the boundary conditions
are obtained as

ẑ ˆ∆H “jω `

ẑ ˆ jωεµM1,‖ ´ ẑ ˆ∇‖ ˆ P1,z ` P0,‖
˘

´ ẑ ˆ∇‖
`

∇‖ ¨M1,‖ `M0,z

˘

,
(7a)

ẑ ˆ∆E “jω `

ẑ ˆ jωµP1,‖ ` ẑ ˆ∇‖ ˆ µM1,z ´ µM0,‖
˘

´ ẑ ˆ∇‖
1

ε

`

∇‖ ¨ P1,‖ ` P0,z

˘

,

(7b)

ẑ ¨∆D “ ´∇‖ ¨
`

ẑ ˆ jωεµM1,‖ ´ ẑ ˆ∇‖ ˆ P1,z ` P0,‖
˘

,
(7c)

ẑ ¨∆B “ ´µ∇‖ ¨
`

M0,‖ ´ ẑ ˆ jωP1,‖ ´ ẑ ˆ∇‖ ˆM1,z

˘

.
(7d)

Relations (7) are the boundary conditions of first order. They
can be compared to the GSTCs of zeroth order given in (1).
One can easily verify that if all terms with subscript 1
(corresponding to k “ 1) are dropped, relations (7) will
reduce to (1). Similarly to what has been done to obtain
relations (2), the normal component of P and M can be
dropped yielding boundary conditions expressed only in terms
of surface polarization densities

ẑˆ∆H “ jω
`

ẑ ˆ jωεµM1,‖ ` P0,‖
˘´ẑˆ∇‖

`

∇‖ ¨M1,‖
˘

,
(8a)

ẑˆ∆E “ jω
`

ẑ ˆ jωµP1,‖ ´ µM0,‖
˘´ẑˆ∇‖

1

ε

`

∇‖ ¨ P1,‖
˘

,

(8b)
ẑ ¨∆D “ ´∇‖ ¨

`

ẑ ˆ jωεµM1,‖ ` P0,‖
˘

, (8c)

ẑ ¨∆B “ ´µ∇‖ ¨
`

M0,‖ ´ ẑ ˆ jωP1,‖
˘

. (8d)

Compared to (2), the last term of relations (8a) and (8b)
are spatial derivatives. Meaning that solving (8) may be
more involved than the usual GSTCs. Future investigations
will confirm that these new relations are more accurate and
therefore worth considering despite their increased complexity.

V. CONCLUSION

By considering a simple electromagnetic transformation,
we have shown how the GSTCs can be used to synthesize a
zero-thickness metasurface and find its constitutive parameters.
Then, these parameters have been applied to a thin material
slab and the discrepancies between the response of the model
and the material slab have been presented. We noted that the

more demanding is the specified transformation (e.g. perfect
absorption), the larger is the error. Finally, the GSTCs have
been extended to take into account higher order terms allowing
a better description of the metasurface.
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