
On Each Condition of Soundness for Acyclic Free Choice Workflow Nets

Shingo Yamaguchi and Naoki Nakahara
Graduate School of Sciences and Technology for Innovation, Yamaguchi University

2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
Email: shingo@yamaguchi-u.ac.jp

Abstract: Workflow nets (WF-nets for short) are Petri nets
which represent workflows. Soundness is a criterion of logi-
cal correctness defined for WF-nets. A WF-net is said to be
sound if it satisfies three conditions: (i) option to complete,
(ii) proper completion, and (iii) no dead tasks. Our result
shows that for an acyclic free choice WF-net, (1) Conditions
(i) and (ii) of soundness are respectively equivalent to liveness
and boundedness of the short-circuited net; (2) Checking of
Conditions (i) and (ii) are respectively NP-complete; and (3)
If the short-circuited net has no disjoint paths from a transition
to a place (or no disjoint paths from a place to a transition),
Conditions (i) and (ii) can be checked in polynomial time.
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1. Introduction
Workflow nets [1] (WF-nets for short) are Petri nets [2] which
represent workflows. A WF-net is said to be sound if it satis-
fies three conditions: (i) option to complete, (ii) proper com-
pletion, and (iii) no dead tasks. Soundness is a criterion of
logical correctness for workflows. Most actual workflows can
be modeled as a subclass of WF-nets called as free-choice (FC
for short) WF-nets. Van der Aalst [1] proposed a polynomial
time procedure to decide soundness for FC WF-nets.

If a given WF-net is non-sound, we should modify it. We
may find a clue to the modification by analyzing which con-
ditions of soundness are not satisfied. Nevertheless, little
is known about properties and computation complexity for
checking each condition.

In this paper, focusing our analysis on acyclic FC WF-nets,
we reveal properties and computation complexity for check-
ing each condition of soundness. After the introduction in
Sect. 1, Sect. 2 gives the definition and properties of WF-
nets. In Sect. 3, we show the correspondence between each
condition and Petri nets’ basic properties such as liveness and
boundedness. Then we prove the NP-completeness for check-
ing each condition. In Sect. 4, by imposing structural restric-
tions on acyclic FC WF-nets, we show that each condition
of soundness can be checked in polynomial time. Section 5
gives the conclusion and future work.

2. WF-Nets and Properties
2.1 WF-Nets

A Petri net [2] is a three tuple N=(P, T,A), where P , T , and
A are respectively finite set of places, transitions, and arcs.
For a place or transition x,

N•x and x
N• respectively denote

{y|(y, x)∈A} and {y|(x, y)∈A}. N is said to be free choice
(FC for short) if ∀p1, p2∈P : p1

N•∩p2
N•̸=∅⇒|p1

N•|=|p2
N•|=1.

A marking of N is a mapping M :P→N. We represent M

as a bag over P , i.e. M=[pM(p)|p∈P,M(p)>0]. A transi-
tion t is said to be firable in a marking M if M≥N•t. This is
denoted by M [N, t⟩. Firing t in M results in a new mark-
ing M ′ (=M∪tN•\N•t). This is denoted by M [N, t⟩M ′. A
marking Mn is said to be reachable from a marking M0 if
there exists a transition sequence σ (=t1t2 · · · tn) such that
M0[N, t1⟩M1[N, t2⟩M2 · · · [N, tn⟩Mn. This is denoted by
M0[N, σ⟩Mn. σ is called firing sequence. The set of all pos-
sible firing sequences from M0 is denoted by L(N,M0). A
transition t in (N,M0) is said to be dead if t does not ap-
pear in any firing sequence in L(N,M0). A marking is said
to be dead if no transition is firable in the marking. The set
of all possible markings reachable from M0 is denoted by
R(N,M0).

N is said to be a WF-net if (i) N has a single source place
pI and a single sink place pO and (ii) every node is on a path
from pI to pO. Each action of a workflow is modeled as a
transition. Causalities between actions are modeled as places
and arcs. The initial marking of any WF-net is [pI ]. If we
add a transition t∗ to a WF-net N which connects pO with pI ,
then we obtain a strongly-connected net. The net is called the
short-circuited net of N and is denoted by N .

We say a path from a node x to a node y as an XY-path,
where if x∈P then X is P, otherwise X is T; if y∈P then Y is
P, otherwise Y is T. Two paths are said to be (node) disjoint if
they have the same start node and the same end node but do
not have any internal node in common. Let c be a cycle in N .
A path is called a handle of c if h and a part of c are disjoint.
A path b = y1y2· · ·ym (m≥2) is called a bridge between c
and h if b shares exactly one node, y1 or ym, with each of c
and h.

2.2 Soundness

A Petri net N with an initial marking M0, i.e. (N,M0), is
said to be live if, for every marking M∈R(N,M0) and every
transition t∈T , there exists a marking M ′∈R(N,M) such
that M ′[N, t⟩. (N,M0) is said to be k-bounded or simply
bounded if, for every marking M∈R(N,M0) and every place
p, M(p)≤k. Soundness is a criterion of logical correctness
defined for WF-nets. A WF-net N is said to be sound if

(i) Option to complete:
∀M∈R(N, [pI ]): ∃M ′∈R(N,M):M ′≥[pO];

(ii) Proper completion:
∀M∈R(N, [pI ]):M≥[pO] ⇒ M=[pO]; and

(iii) No dead tasks:
There is no dead transition in (N, [pI ]).

A WF-net N is sound iff (N, [pI ]) is live and bounded.
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3. Properties and Computation Complexity
In this section, we reveal that for acyclic FC WF-nets, (1)
Conditions (i) and (ii) of soundness are respectively equiva-
lent to liveness and boundedness of the short-circuited nets;
and (2) Checking of Conditions (i) and (ii) are respectively
NP-complete.

3.1 Condition (i) of Soundness

Theorem 1: An acyclic FC WF-net N satisfies Condi-
tion (i) of soundness, i.e. ∀M∈R(N, [pI ]): ∃M ′∈R(N,M):
M ′≥[pO], iff (N, [pI ]) is live.

Lemma 1: An acyclic FC WF-net N satisfies Condi-
tion (i) of soundness, i.e. ∀M∈R(N, [pI ]): ∃M ′∈R(N,M):
M ′≥[pO], iff (N, [pI ]) has no dead marking.

Proof: The proof of “if” part: Since N is strongly-
connected, transition t∗ repeatedly fires in (N, [pI ]). This
means that in (N, [pI ]), [pI ] is necessarily transformed to a
marking which has a token at pO. Thus N satisfies Condition
(i) of soundness.

The proof of “only if” part: Condition (i) of soundness
can be rewritten as the following property: A token necessar-
ily arrives at pO in (N, [pI ]). Let us consider the monotonic-
ity of this property: Let M be any marking of N such that
M > [pI ], a token necessarily arrives at pO in (N,M). The
structure of the place having two or more output transitions is
called a conflict. For each conflict structure, whichever tran-
sition we choose, a token arrives at pO in (N, [pI ]). Since
N is FC, there is no marking such that some transitions of
a conflict structure are firable and the others are not firable.
Therefore, we can choose which transition to fire in (N,M)
as well as (N, [pI ]). Whichever transition we choose, a token
in (N,M) arrives at pO. Thus Condition (i) of soundness has
monotonicity. Since we have

• [pI ] is necessarily transformed to a marking M (>[pO])
in N (Condition (i) of soundness)

• M = [pO]∪M ′[N, t∗⟩[pI ]∪M ′

• [pI ]∪M ′ is necessarily transformed to a marking L
(>[pO]) in N

(Monotonicity of Condition (i) of soundness)
• L = [pO]∪L′[N, t∗⟩[pI ]∪L′

...
Thus (N, [pI ]) has no dead marking. Q.E.D.
Lemma 2: Let N be an acyclic FC WF-net. (N, [pI ]) has

no dead marking iff (N, [pI ]) is live.
Proof: The proof of “if” part: Immediate from the defini-

tion.
The proof of “only if” part: Since (N, [pI ]) has no dead

marking, pI is necessarily marked repeatedly. Assume that
there are dead transitions in (N, [pI ]). Let t is a dead transi-
tion which is a nearest from pI . Since there is no other dead
transition between pI and t, a token of pI arrives at an in-
put place of t. Since pI is marked repeatedly, the other input
places also can be marked. This means that t is not dead. In
the same way, we can make sure that all the transitions are
not dead. Since pI is marked infinitely, every transition can
always fire again. Thus (N, [pI ]) is live. Q.E.D.
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Figure 1. A non-sound acyclic FC WF-net N1. N1 satisfies
Condition (i) of soundness.
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Figure 2. The reachability tree of (N1, [pI ]).

Proof of Theorem 1: Immediate from Lemmas 1 and 2.
Q.E.D.

Theorem 1 means that for an acyclic FC WF-net N , Con-
dition (i) of soundness is equivalent to liveness of the short-
circuited net (N, [pI ]).

Let us consider an acyclic FC WF-net N1 shown in Fig. 1.
(N1, [pI ]) has the reachability tree shown in Fig. 2. (N1, [pI ])
satisfies Condition (i) of soundness, because every marking
in R(N1, [pI ]) is reachable to [p2, pO] or [p3, pO]. By The-
orem 1, we can say that (N1, [pI ]) is live. Let us make
sure of that. N1 has two minimal siphons {pI , p1, p2, pO}
and {pI , p1, p3, pO}. Every siphon in N1 contains a marked
trap {pI , pO}. This means that (N1, [pI ]) is live by Com-
moner’s theorem (Theorem 12 of Ref. [2]). On the other hand,
(N1, [pI ]) does not satisfy Condition (ii) of soundness, be-
cause [p1, pO] (∈R(N1, [pI ])) is greater than [pO].

Theorem 2: The following problem is NP-complete:
Given an acyclic FC WF-net N , to decide whether N violates
Condition (i) of soundness.

Proof: By Theorem 1, the condition is equivalent to the
liveness of (N, [pI ]). The non-liveness problem for (N, [pI ])
is NP-complete (Theorem 1 of Ref. [3]). Q.E.D.

This theorem means that for acyclic FC WF-nets, Condi-
tion (i) of soundness cannot be decided in polynomial time if
P ̸=NP .

3.2 Condition (ii) of Soundness

Theorem 3: An acyclic FC WF-net N satisfies Condi-
tion (ii) of soundness, i.e. ∀M∈R(N, [pI ]): M≥[pO] ⇒
M=[pO], iff (N, [pI ]) is bounded.

Proof: Be similar to the proof of Property 2 of Ref. [4].
The proof of “if” part: Let (N, [pI ]) be bounded. As-

sume that (N, [pI ]) has a marking M in R(N, [pI ]) such that
M>[pO]. M can be divided into two sub-markings [pO] and
M ′. Note that M ′>∅. We have

M = [pO]∪M ′[N, t∗⟩[pI ]∪M ′

[N, ∗⟩M∪M ′(≥M).

122



p4t2

p5

t4

t3

pI t1

p1

p2

t

p3

t5

t6 pO

Figure 3. A non-sound acyclic FC WF-net N2. N2 satisfies
Condition (ii) of soundness.
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Figure 4. The reachability tree of (N2, [pI ]) drawn by the
solid lines. The dashed lines and solid lines represent
the reachability tree of (N2, [pI ]).

This means that (N, [pI ]) is unbounded. Therefore, the as-
sumption must be wrong. Thus N satisfies Condition (ii) of
soundness.

The proof of “only if” part: Let us consider the contra-
position. If every marking M in R(N, [pI ]) has no token at
pO, i.e. ∀M∈R(N, [pI ]) : M(pO)=0, then transition t∗ never
fires in (N, [pI ]). Therefore, R(N, [pI ])=R(N, [pI ]) holds.
Since N is acyclic, (N, [pI ]) is bounded. This means that
(N, [pI ]) is bounded.

If there exists a marking M in R(N, [pI ]) such that M
has a token at pO, then M=[pO]. Since [pO][N, t∗⟩[pI ],
R(N, [pI ])=R(N, [pI ]) holds. Since N is acyclic, (N, [pI ])
is bounded. This means that (N, [pI ]) is bounded. Q.E.D.

This theorem means that for an acyclic FC WF-net N ,
Condition (ii) of soundness is equivalent to boundedness of
the short-circuited net (N, [pI ]).

Let us consider an acyclic FC WF-net N2 shown in Fig. 3.
(N2, [pI ]) has the reachability tree shown in Fig. 4. (N2, [pI ])
satisfies Condition (ii) of soundness, because it has only [pO]
as a marking with a token in pO. By Theorem 3, we can say
that (N2, [pI ]) is bounded. Let us make sure of that. Figure
4 shows that every marking in R(N2, [pI ]) has at most two
tokens in each place. This means that (N2, [pI ]) is 2-bounded
or simply bounded. On the other hand, (N2, [pI ]) does not

p2 3t2

pI t1

t

p1 t6 pO

t5

p3

p4

t4

Figure 5. A non-sound acyclic FC WF-net N3. N3 has no
disjoint TP-paths but has disjoint PT-paths: p1t2p2t3p3t6
and p1t5p4t6. N3 does not satisfy Condition (i) of sound-
ness but satisfies Condition (ii).

satisfy Condition (i) of soundness, because [p4
2] and [p5

2]
are dead.

Theorem 4: The following problem is NP-complete:
Given an acyclic FC WF-net N , to decide whether N violates
Condition (ii) of soundness.

Proof: By Theorem 3, the condition is equivalent to the
boundedness of (N, [pI ]). The unboundedness problem for
(N, [pI ]) is NP-complete (Theorem 3 of Ref. [4]). Q.E.D.

This theorem means that for acyclic FC WF-nets, Condi-
tion (ii) of soundness cannot be decided in polynomial time if
P ̸=NP .

3.3 Condition (iii) of Soundness

The computation complexity to check Condition (iii) of
soundness is an open question.

4. Structural Restricted Nets Checkable in
Polynomial Time

In this section, by imposing structural restrictions on acyclic
FC WF-nets, we show that Conditions (i) and (ii) of sound-
ness can be checked in polynomial time

Property 1: Let N be an acyclic FC WF-net such that N
has no disjoint TP-paths.

(a) N satisfies Condition (i) of soundness iff N has no dis-
join PT-paths.

(b) N always satisfies Condition (ii) of soundness.
Proof: (a) The proof of “if” part: Since N has neither

disjoint TP-paths nor disjoint PT-paths, N is acyclic well-
structured. Since N is sound, N satisfies Condition (i) of
soundness.

The proof of “only if” part: Let us consider the contra-
position. Since N has disjoint PT-paths, there exists a cir-
cuit c having a PT-handle ρ in N . Assume that ρ has a TP-
bridge. This TP-bridge forms disjoint TP-paths with c and
ρ. Therefore, the assumption must be wrong. Since ρ has no
TP-bridge, (N, [pI ]) is non-live and/or unbounded. Since N
has no disjoint TP-paths, (N, [pI ]) is bounded (as explained
later). Thus (N, [pI ]) is non-live. This means by Theorem 1
that N violates Condition (i) of soundness.

(b) Since N has no disjoint TP-paths, no circuit of N has
a TP-handle. This means by Theorem 3.1 of Ref. [5] that N
is structurally bounded. (N, [pI ]) is bounded. By Theorem 3,
we show that N satisfies Condition (ii) of soundness. Q.E.D.

Property 1 can be decided in polynomial time by using the
max-flow min-cut algorithm.
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Figure 6. A non-sound acyclic FC WF-net N4. N4 has no dis-
joint PT-paths but has disjoint TP-paths: t1p1t2p2t3pO
and t1p4t4pO. N4 satisfies Condition (i) of soundness
but does not satisfy Condition (ii).

As an example, let us consider an acyclic FC WF-net N3

shown in Fig. 5. N3 has no disjoint TP-paths but has disjoint
PT-paths: p1t2p2t3p3t6 and p1t5p4t6. Property 1 (a) shows
that N3 does not satisfy Condition (i) of soundness. We have
[pI ][N3, t1t5⟩[p4]. [p4] is, however, dead, so it is not reach-
able to a marking with a token in pO. Thus N3 does not satisfy
Condition (i) of soundness. On the other hand, Property 1 (b)
shows that N3 satisfies Condition (ii) of soundness. There is
no marking in R(N3, [pI ]) with a token in pO. This means
that N3 satisfies Condition (ii) of soundness.

Property 2: Let N be an acyclic FC WF-net such that N
has no disjoint PT-paths.

(a) N always satisfies Condition (i) of soundness.
(b) N satisfies Condition (ii) of soundness iff N has no

disjoin TP-paths.
Proof: (a) Since N has no disjoint PT-paths, no circuit of

N has a PT-handle. This means by Theorem 3.1 of Ref. [5]
that N is repetitive. In the same way as Theorem 1, we show
that (N, [pI ]) is live and satisfies Condition (i) of soundness.

(b) The proof of “if” part: Since N has neither disjoint
PT-paths nor disjoint TP-paths, N is acyclic well-structured.
Since N is sound, N satisfies Condition (ii) of soundness.

The proof of “only if” part: Let us consider the contra-
position. Since N has disjoint TP-paths, there exists a cir-
cuit having a TP-handle in N . (N, [pI ]) is non-live and/or
unbounded. Since (N, [pI ]) is live, (N, [pI ]) is unbounded.
This means by Theorem 3 that N violates Condition (ii) of
soundness. Q.E.D.

Property 2 can be decided in polynomial time by using the
max-flow min-cut algorithm.

As an example, let us consider an acyclic FC WF-net N4

shown in Fig. 6. N4 has no disjoint PT-paths but has disjoint
TP-paths: t1p1t2p2t3pO and t1p4t4pO. Property 2 (a) shows
that N4 satisfies Condition (i) of soundness. N4 has two min-

imal siphons: {pI , p1, p2, p4, pO} and {pI , p1, p2, p3, pO}.
Every siphon in N4 contains a marked trap {pI , p1, p2, pO}.
This means that (N4, [pI ]) is live by Commoner’s theorem.
Thus N3 satisfies Condition (i) of soundness. On the other
hand, Property 2 (b) shows that N4 does not satisfy Condi-
tion (ii) of soundness. We have [pI ][N4, t1t2t3⟩[p3, p4, pO]
(>[pO]). Thus N4 does not satisfy Condition (ii) of sound-
ness.

5. Conclusion
In this paper, we revealed that (1) Conditions (i) and (ii) of
soundness are respectively equivalent to liveness and bound-
edness of the short-circuited net; (2) Checking of Condi-
tions (i) and (ii) are respectively NP-complete; and (3) If the
short-circuited net has no disjoint PT-paths (or no disjoint TP-
paths), Conditions (i) and (ii) can be checked in polynomial
time. These results would help us to find a clue to modifying
non-sound WF-nets. As an example, let us consider the non-
sound WF-net shown in Fig. 3. This WF-net does not satisfy
Condition (i). In fact, it has two dead markings: [p4

2] and
[p5

2]. We can apply the supervisory control method proposed
in Ref. [6] to prevent those dead markings. Figure 7 shows
the modified WF-net. We would like to consider this in the
future research.
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