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Abstract—We propose a light-weight performance analysis
of Wi-Fi offload using a simple Markov model. Although the
proposed model does not describe the behavior of the contention
window of each station in detail, it allows us to analyze the
non-saturation throughput while considering interaction among
interfering stations and the queueing behavior of each station.
In addition to this, the proposed model does not need to use
the assumption that frames arrive at relay station according to
a Poisson process. In this paper, we show how to apply the
mean field approximation to the model to significantly reduce
the amount of computation. We show that the proposed model
accurately estimates the throughput performance of the Wi-Fi
offload, and that the mean-field approximation is still valid in
the scenario of the Wi-Fi offload.

I. Introduction

Due to rapid spread of mobile routers or smartphones
equipped with Wi-Fi and 3G/4G interfaces, which are referred
to as client tethering devices in this paper, Wi-Fi tethering
via 3G/4G network has become a popular access technology
to the Internet. Wi-Fi tethering is applicable to a variety
of client terminals, such as laptops, tablets, portable gaming
systems and medical devices [1]. In many countries, however,
the Wi-Fi tethering via 3G/4G network often requires an
expensive payment, as well as some traffic restrictions. If a
client tethering device can work as a Wi-Fi relay station, Wi-
Fi tethering is possible over provider’s Wi-Fi access network
without using cellular service. This is so called Wi-Fi offload.
In fact, several mobile routers available in a market (e.g., NEC
Aterm PA-W500P-B) can be used as Wi-Fi relay stations.
When a tethering device is configured with the Wi-Fi hot
spot, client’s terminals can gain access to the Internet via the
tethering device, and thereby save the trouble of connecting
each device separately.

The objective of this paper is to theoretically analyze the
throughput performance of the Wi-Fi tethering with Wi-Fi
offload. In the common scenario of Wi-Fi offload, at least
three stations – client terminal, client tethering device and
provider’s AP – share the same wireless medium without hid-
den terminals. One difficulty of the throughput analysis is the
interference between these stations. Note that the interference
between stations still exists in a single WLAN, and existing

studies concerning a single WLAN apply the mean field
approximation [2], in which the behavior of stations sharing
the common wireless medium is assumed to be statistically
independent. It is proved by [3] that, for a wide range of
random back-off algorithms, the mean field approximation is
asymptotically exact as the number of sources grows. In the
case where only a small number of stations share the wireless
medium like Wi-Fi offload, however, the accuracy of the mean
field approach has not been well verified.

The other difficulty is how to describe the frame arrival
process to the relay station. In general, the frame-arrival
process at the relay station is not Poisson even if frames
arrive at source stations (provider’s AP and client’s terminal)
according to Poisson processes. This is because the frame
arrival process at the relay station is the superposition of the
output processes from source stations and the output process
from each source station is not Poisson in general. Most of
existing studies concerning the performance analysis of multi-
hop WLANs assumed that the frame arrival processes at relay
stations are also Poisson, but this assumption needs to be
verified in Wi-Fi offload cases.

We have previously proposed a simple Markov model for
the analysis of multi-hop WLANs [4], where the length of
backoff period and frame-transmission period are assumed
to be exponentially distributed. Although this model is far
less detailed than existing analytical models for WLANs, it
allows us to analyze the non-saturation throughput accurately
by considering the interaction among interfering stations and
queueing process of each station. It requires, however, a large
amount of computation even if only a small number of stations
sharing the common wireless medium. In this paper, we
propose a light-weight analysis of the proposed model based on
the mean-field approximation. The contributions of this paper
are two folds: one is to show that the mean-field approximation
is still valid in the scenario of the Wi-Fi offload. The other one
is to verify that the proposed model, which is much simpler
than Bianchi’s model and its extensions, is useful in knowing
the non-saturation throughput and queueing process when the
Wi-Fi offload is used.

The paper is organized as follows. In Sec. II, we briefly
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Fig. 1. Wi-Fi Offload.

summarize the related work. In Sec. III, we describe our
Markov model for the analysis of Wi-Fi offload and its solu-
tion. In Sec. IV, we show how the mean field approximation is
applied to the Markov model to make the analysis light-weight.
Then, in Sec. V, we compare the results of the analytical
models with simulation experiments. Finally, the paper ends
with a concluding section.

II. RelatedWork

Wi-Fi term means wireless LAN (WLAN) or its product
based on the 802.11 standards. In this paper, we focus on a
WLAN based on the IEEE 802.11 DCF, which is a random
access scheme based on CSMA/CA. Significant number of
work has been done on the analysis of WLANs based on
IEEE 802.11 DCF. Bianchi [5] proposed a two dimensional
Markov chain model to analyze the performance under sat-
urated conditions. Malone et al. [6] proposed the extension
of Bianchi’s model where they added post-backoff states and
showed throughput results under non-saturated conditions. Liu
et al. [7] showed an extension of Malone’s model which used
a three-dimensional Markov chain to integrate the contention
resolution of DCF and queueing processes into one model.
Their approaches focus on the single wireless LAN, and thus
some extensions are required to apply them to the Wi-Fi teth-
ering with Wi-Fi offload. Bui et al. [8] analyzed the throughput
performance of Wi-Fi offload based on the Bianchi’s approach.

III. Markov model forWi-Fi tethering

We consider a WLAN consisting of a client terminal
(station 1), client tethering device (station 2), and provider’s
AP (station 3) (Fig. 1). All stations work in IEEE 802.11 DCF
basic mode without RTS/CTS scheme. The AP is configured
with a high-speed wired access to the Internet. The tethering
device is connected to the AP, and it shares a Wi-Fi as a
tethering terminal. The client terminal, which needs to gain
access to the Internet, is connected to the tethering device.
We assume that all stations in the network share the same
ideal channel without the existence of hidden-station or signal-
capturing effects.

We assume that frames arrive at station i according to a
Poisson process with rate λi. Note that λ2 = 0 because station 2
is a relay station. Frames arriving at station 1 (from application
layer) are transferred to station 3 via station 2, and frames

arriving at station 3 are transferred to station 1 via station
2. Each station has a buffer with size K, which is used as a
waiting room for frames to be transferred.

In the following, a station is called “BT-off” if its backoff
timer is 0; otherwise it is called “BT-on.” A station is also
called “inactive” if it senses the frame transmission by any
other stations; otherwise, it is called “active”. A station is
active when it senses that the wireless medium is idle or when
it is transmitting a frame. In the proposed model, the backoff
timer of station i turns off at random times with intensity
νi if it is BT-on and active. This assumption means that the
length of the period in which station i is BT-on and active is
exponentially distributed with mean 1/νi.

When the backoff timer of a station turns off and it has at
least one frame, it immediately starts the frame transmission.
The frame-transmission period is defined as a time period
which starts with the frame transmission and ends with the
receipt of the ACK. In the proposed model, the length of the
frame transmission period is assumed to be independent and
exponentially distributed with mean 1/μ. A station is BT-off
when it is transmitting a frame. When the frame-transmission
period ends, the station becomes BT-on even if it leaves
no frame in the buffer. This is called post-backoff which is
introduced in [6]. In the proposed model, the collision of
frames is ignored.

For simplifying the notation, we introduce the following
variable representing the joint state of the backoff timers of all
stations:

B def
= B1 + 2B2 + 4B3.

where Bi denote a variable representing the state of backoff
timer of station i; Bi = 1 (Bi = 0) when station i is BT-off
(BT-on). For example, B = 5 means (B1, B2, B3) = (1, 0, 1).
Let Li denote the number of frames in the buffer of station i
including the one being transferred by station i. The pair of
the number of frames and the backoff states of the stations,
(L1, L2, L3, B), follows a continuous time Markov chain. Let
p(k1, k2, k3, n) be the probability that L1 = k1, L2 = k2, L3 = k3
and B = n in the stationary state. The global balance equation
concerning p(k1, k2, k3, 0) is given as

(1(k1 < K)λ1 + 1(k3 < K)λ3 + ν1 + ν2 + ν3)p(k1, k2, k3, 0)
= 1(k1 > 0)λ1p(k1 − 1, k2, k3, 0)
+ 1(k3 > 0)λ3p(k1, k2, k3 − 1, 0)
+ 1(k1 < K) {1(k2 > 0)μp(k1 + 1, k2 − 1, k3, 1)
+1(k2 = K)μp(k1 + 1, k2, k3, 1)}

+ 1(k3 < K) {1(k2 > 0)μp(k1, k2 − 1, k3 + 1, 4)
+1(k2 = K)μp(k1, k2, k3 + 1, 4)}

+ 1(k2 < K)μp(k1, k2 + 1, k3, 2),

where 1(A) in the indicator function, which is equal to 1 if
A is true and 0 if A is false. The global balance equations
concerning p(k1, k2, k3, n) for n = 1, · · · , 7 are shown in
Appendix.

Let Q denote the infinitesimal generator of the continuous
time Markov chain and p denote its stationary distribution. p
should satisfy

pQ = 0. (1)
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Now let P def
= I− 1

aQ where a def
= maxi{Qii} and I is the identity

matrix. It follows from (1) that

pP = p.

Thus, we can numerically obtain the stationary distribution
by recursively getting the distribution through relation pn+1 =
pnP from an arbitrary initial distribution p0. This technique
for numerically obtaining the stationary distribution is called
uniformization method. The total throughput is obtained as

total throughput

= μd
K∑

i=0

K∑

j=1

K∑

k=0

1∑

B1=0

1∑

B3=0
p(i, j, k, B1 + 2 + 4B3),

where d is the average length of the payload of a frame.

IV. Mean-Field Approximation

A. Description of stations

The solution of the proposed model by the uniformization
requires a large amount of computation because it needs quite
a large number of iteration. In this paper, we apply the mean-
filed approximation to analyze the model with a much smaller
amount of computation. Let Ai denote a variable representing
the state of station i; Ai = 0 when station i is BT-on and
active, Ai = 1 when station i is BT-on and inactive, Ai = 1∗
when station i is BT-off and inactive, and Ai = 2 when station
i is BT-off and active.

A station is called in a medium-idle state when it senses that
the wireless medium is idle. Note that station i is in a medium-
idle state only when it is active. The transition of a station from
a medium-idle state to an inactive state is triggered by the
frame transmission of other stations, but this interdependency
between stations makes the analysis complicated. To treat the
state transitions of each station independently, in the mean-
field approximation, we assume that station i transits from a
medium-idle state to an inactive state according to a Poisson
process with intensity γi. Parameter γi is first unknown and is
determined in the analysis as explained later.

B. Source stations

In the Wi-Fi offload, stations 1 and 3 are source stations
that generate frames, and station 2 is the relay station that
only forwards frames. In this subsection, we show the global
balance equations of source stations. Let pi(k, l) denote the
probability that Li = k and Ai = l in the stationary state. When
1 ≤ k ≤ K − 1,

(λi + γi + νi)pi(k, 0) = λi pi(k − 1, 0)
+ μ(pi(k, 1) + pi(k + 1, 2)),

(λi + μ)pi(k, 1) = λi pi(k − 1, 1) + γi pi(k, 0)
+ 1(k = 1)λi p(0, 1∗),

(λi + μ)pi(k, 2) = λi pi(k − 1, 2) + νi pi(k, 0).

(2)

When k = 0,
(λi + γi + νi)pi(0, 0) = μ(pi(0, 1) + pi(1, 2)),

(λi + μ)pi(0, 1) = γi pi(0, 0),
(λi + γi)pi(0, 2) = νi pi(0, 0) + μpi(0, 1∗),
(λi + μ)pi(0, 1∗) = γi p(0, 2),

(3)

and when k = K,
(γi + νi)pi(K, 0) = λi pi(K − 1, 0) + μpi(K, 1),

μpi(K, 1) = λi pi(K − 1, 1) + γi pi(K, 0),
μpi(K, 2) = λi pi(K − 1, 2) + νi pi(K, 0).

(4)

The stationary distribution of a source station can be
numerically obtained from global balance equations (2), (3),
and (4). Assume that pi(0, 2) is known to be equal to c. Once
pi(0, 2) is known, pi(0, 0), pi(0, 1), and pi(0, 1∗) are obtained
from the second, the third and the forth equations of (3) as
follows:

pi(0, 0) =
λi(λi + γi + μ)
νi(λi + μ)

c, pi(0, 1) =
λiγi(λi + γi + μ)
νi(λi + μ)2

c,

pi(0, 1∗) =
γi
λi + μ

c.

The first equation of (3) gives

pi(1, 2) =
λi + γi + ν

μ
pi(0, 0) − pi(0, 1).

From the second and third equations of (2) with the above
expression, we obtain pi(1, 0) and pi(1, 1) as follows:

pi(1, 0) =
λi + μ

νi
pi(1, 2) − λi

νi
pi(0, 2),

pi(1, 1) =
λi
λi + μ

pi(0, 1) +
γi
λi + μ

pi(1, 0) +
λi
λi + μ

pi(0, 1∗)

=
γi
νi
pi(1, 2) +

λi
λi + μ

pi(0, 1) − λiγi
(λi + μ)νi

pi(0, 2)

+
λi
λi + μ

pi(0, 1∗).

Now, we show that p(k, 0), p(k, 1), and p(k, 2) are obtained
for k > 1 if {pi( j, 0), pi( j, 1), pi( j, 2)}k−1j=0 is known. First observe
that pi(k, 2) is obtained from the first equation of (2) as follows:

pi(k, 2) =
λi + γi + ν

μ
pi(k − 1, 0) − pi(k − 1, 1) − λi

μ
pi(k − 2, 0).

Once pi(k, 2) is obtained, pi(k, 0) and pi(k, 1) are also obtained
from the second and the third equations of (2). For example,
when k < K

pi(k, 0) =
λi + μ

νi
pi(k, 2) − λi

νi
pi(k − 1, 2),

pi(k, 1) =
γi
νi
pi(k, 2) +

λi
λi + μ

pi(k − 1, 1) − λiγi
(λi + μ)νi

pi(k − 1, 2),
and when k = K

pi(K, 0) =
μ

νi
pi(K, 2) − λi

νi
pi(K − 1, 2),

pi(K, 1) =
γi
νi
pi(K, 2) +

λi
μ
pi(K − 1, 1) − λiγi

μνi
pi(K − 1, 2).

Note that we can determine the value of unknown constant
c = pi(0, 2) from the normalization condition that the sum of
the probabilities of all states is equal to one.

Unknown parameter γi of station i is determined from
the stationary distributions of other stations. To see this, note
that the following equality derives from the global balance
equations:

μp(ia)i = γi p
(mi)
i , (5)
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where

p(ia)i
def
= pi(0, 1∗) +

K∑

k=0
pi(k, 1),

p(mi)i
def
= pi(0, 2) +

K∑

k=0
pi(k, 0).

Note that p(ia)i is the probability that station i is inactive, and
p(mi)i is the probability that station i is in a medium-idle state.
Observe that μp(ia)i is the probability flow concerning the state
transition of station i from inactive states to medium-idle states.
This probability flow should be equal to the probability flow
of state transitions of stations other than station i triggered by
the end of frame transmission, and thus

μp(ia)i = μ
∑

j�i

K∑

k=1
p j(k, 2). (6)

Combining (5) and (6) yields

γi =
μ
∑
j�i
∑K
k=1 p j(k, 2)

p(mi)i

=
μ
∑
j�i
∑K
k=1 p j(k, 2)

pi(0, 2) +
∑K
k=0 pi(k, 0)

. (7)

C. Forwarding station

The global balance equations of forwarding station (station
2) are simpler than those of source stations. When 1 ≤ k ≤
K − 1, we have

(γ2 + ν2)p2(k, 0) = μ(p2(k − 1, 1) + p2(k + 1, 2)),
μp2(k, 1) = γ2p2(k, 0),
μp2(k, 2) = ν2p2(k, 0) + 1(k = 1)μp2(0, 1∗).

When k = 0, we have
(γ2 + ν2)p2(0, 0) = μp2(1, 2), μp2(0, 1) = γ2p2(0, 0),

γ2p2(0, 2) = ν2p2(0, 0), μp2(0, 1∗) = γ2p2(0, 2).

When k = K, we have
(γ2 + ν2)p2(K, 0) = μp2(K − 1, 1),

μp2(K, 1) = γ2p2(K, 0), μp2(K, 2) = ν2p2(K, 0).

Parameter γ2 can be obtained by (7). As shown in the global
balance equations in the above. the forwarding station transits
from state (k−1, 1) to state (k, 0) with rate μ. This transition is
triggered by the completion of frame transmission by a source
station. The frame transmitted by a source station should arrive
at the forwarding station, and thus the completion of the frame
transmission of a source station increases the number of frames
in the buffer of the forwarding station. This means that, in the
proposed model, the frame arrival process at the forwarding
station is exactly described by the superposition of the output
processes from the source stations. The stationary distribution
of forwarding station can be obtained in the same manner with
source stations. The throughput of station 2 is equal to the total
throughput, and thus

total throughput

= μd
K∑

k=1
p2(k, 2) = ν2d

K∑

k=1
p2(k, 0) + μdp2(0, 1∗).

Fig. 2. Procedure for obtaining the stationary distribution.

D. Consideration of Frame Collision

Since the proposed model neglects the frame collision, the
mean duration of the backoff period of each station should be
equal to Ts × CWmin/2, where Ts is the slot time. In real sit-
uations, however, the frame collision happens and it increases
the mean duration of the backoff period. To approximately
take into account of the influence of the frame collision, we
additionally use the assumption that the frame transmission
starting at time T0 fails if one of the other stations also starts
the frame transmission during (T0,T0 + Ts]. Station i starts
the frame transmission only when the medium is idle, where
the frame transmission by other stations occurs according to a
Poisson process with intensity

ri =
∑

j�i

ν j
∑K
k=1 p j(k, 0) + λ j p j(0, 2)∑K
k=0 p j(k, 0) + p j(0, 2)

,

where λ2 = 0. Since the probability that the frame transmission
by other stations does not start during (T0,T0 + Ts] is equal
to e−r1Ts , the collision probability that station i experiences is
1 − e−r1Ts . Thus, the mean duration of the backoff period of
station i, ν−1i , is given as

ν−1i = e
−riTs

n∑

n=0
(1 − e−riTs)nCW(n)/2,

CW(n) def= min {2n(CWmin + 1),CWmax + 1} − 1.
(8)

The total throughput is given as

total throughput = e−riTsμd
K∑

k=1
p2(k, 2)

= e−riTsd
⎛⎜⎜⎜⎜⎜⎝ν2

K∑

k=1
p2(k, 0) + μp2(0, 1∗)

⎞⎟⎟⎟⎟⎟⎠ .

The procedure for obtaining the stationary distribution
{pi(k, n)}k,n is summarized in Fig. 2. In the next section, we
show that the above approximation improves the accuracy of
the analysis.

V. Numerical experiments

We compare the results obtained by the proposed analytical
model with simulation results obtained by a custom-made C
simulator in the scenario shown in Fig. 1. The amount of
uplink traffic (from client terminal to AP) and the amount of
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TABLE I. SIMULATION SETTINGS

Data rate 54 Mbps
SIFS time 16 μs
Slot time 9 μs
CWmin 15

Frame payload 1500 bytes
Buffer size 100 frames

downlink traffic (from AP to client terminal) are the same. All
stations are within communication range of each other, sharing
an IEEE802.11g-based wireless LAN. The frame transmission
period is equal to TDATA+S IFS+TACK+DIFS , where TDATA
and TACK represent the time length required for transmitting
the data and ACK frame respectively. In the simulation, the
binary exponential backoff of the DCF is precisely emulated
although it is largely simplified in the proposed analysis. Other
parameters are summarized in Table I.

Figure 3 shows the total throughput by increasing the
offered load gradually. In the figure, the line of Analysis 1
corresponds to the result without using the mean-field approx-
imation. Both lines of Analyses 2 and 3 show the results using
the mean-field approximation; Analysis 2 does not consider the
frame collision, but Analysis 3 approximately takes account
of its effect by the method explained in Sec. IV-D. Note that
Analysis 1 does not consider the frame collision. As shown in
the simulation results, the total throughput linearly increases
and reaches the highest point (about 15 Mbps) when the offered
load is around 15 Mbps. Then it linearly decreases, finally stays
constant when the offered load is larger than 20 Mbps. This
result is consistent with our previous study [8]. Analysis 1
gives the same total throughput with Analysis 2, verifying that
the mean-field approximation is still valid even in three-station
cases like Wi-Fi offload. However, Analyses 1 and 2 somewhat
overestimate the total throughput, which would come from
the ignorance of the frame collision. Analysis 3 yields more
accurate estimate of the total throughput because it takes into
account of the frame collision. Note that a few days is required
to get the results of the figure by Analysis 1, while only a few
seconds are required to get the results by Analysis 2 or 3.

Figure 4 shows the average queue length of the relay
station. It increases sharply at the point that the total through-
put reaches the maximum, where the relay station becomes
congested (i.e. saturated). Figure 5 shows the average queue
lengths of the source stations. They become congested when
the offered load reaches 20 Mbps. In the two figures, we
find the discrepancy between the simulation and the analyses.
The results by Analyses 1 and 2 are almost the same, and
thus the discrepancy would not be caused by the mean-field
approximation but by the ignorance of the frame collision. In
other words, the approximate treatment of the frame collision
in Sec. IV-D is not sufficient, and more consistent treatment is
required to estimate the queueing behavior more accurately.

VI. Conclusion

In this paper we proposed a light-weight performance
analysis of Wi-Fi offload using a simple Markov model.
Although the proposed model does not describe the behavior
of the contention window of each station in detail, it allows us
to analyze the non-saturation throughput while considering in-
teraction among interfering stations and the queueing behavior

Fig. 3. Total throughput of the network

Fig. 4. Average queue length of relay station

of each station. In addition to this, the proposed model does
not need to assume that the frame-arrival process at the relay
station is Poisson. The simulation experiments verify that the
proposed model accurately estimates the throughput, and that
the mean-field approximation is valid in the scenario of the Wi-
Fi offload. More consistent treatment of the frame collision in
the model remains as a future work.
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Appendix

The global balance equation concerning p(k1, k2, k3, 1) is

(1(k1 < K)λ1 + 1(k3 < K)λ3 + 1(k1 > 0)μ
+ 1(k1 = 0)(ν2 + ν3))p(k1, k2, k3, 1)

= 1(k1 > 0)λ1p(k1 − 1, k2, k3, 1)
+ 1(k3 > 0)λ3p(k1, k2, k3 − 1, 1)
+ ν1p(k1, k2, k3, 0) + 1(k1 = 0)μp(0, k2 + 1, k3, 3)
+ 1(k1 > 0)1(k3 = 1)λ3p(k1, k2, k3 − 1, 5)
+ 1(k1 = 0)1(k3 < K) {1(k2 > 0)μp(0, k2 − 1, k3 + 1, 5)
+ 1(k2 = K)μp(0, k2, k3 + 1, 5)} .

The global balance equation concerning p(k1, k2, k3, 2) is

(1(k1 < K)λ1 + 1(k3 < K)λ3 + 1(k2 > 0)μ
+ 1(k2 = 0)(ν1 + ν3))p(k1, k2, k3, 2)

= 1(k1 > 0)λ1p(k1 − 1, k2, k3, 2)
+ 1(k3 > 0)λ3p(k1, k2, k3 − 1, 2) + ν2p(k1, k2, k3, 0)
+ 1(k1 = 1)1(k2 > 0)λ1p(0, k2, k3, 3)
+ 1(k3 = 1)1(k2 > 0)λ3p(k1, k2, 0, 6)
+ 1(k2 = 1)μ(p(k1 + 1, 0, k3, 3) + p(k1, 0, k3 + 1, 6)).

The global balance equation concerning p(k1, k2, k3, 3) is

(λ1 + 1(k2 > 0)μ + 1(k2 = 0)ν3 + 1(k3 < K)λ3)p(0, k2, k3, 3)
= 1(k2 = 0)ν1p(0, k2, k3, 2) + ν2p(0, k2, k3, 1)
+ 1(k3 > 0)λ3p(0, k2, k3 − 1, 3)
+ 1(k2 = 1)1(k3 < K)μp(0, 0, k3 + 1, 7)
+ 1(k3 = 1)1(k2 > 0)λ3(0, k2, 0, 7)

(1(k1 < K)λ1 + 1(k1 > 0)μ1(k1 = 0)ν3
+ 1(k3 < K)λ3)p(k1, 0, k3, 3)
= ν1p(k1, 0, k3, 2) + 1(k1 > 0)λ1p(k1 − 1, 0, k3, 3)
+ 1(k1 = 0)ν2p(k1, 0, k3, 1) + 1(k3 > 0)λ3p(k1, 0, k3 − 1, 3)
+ 1(k1 > 0)1(k3 = 1)λ3(k1, 0, 0, 7).

The global balance equation concerning p(k1, k2, k3, 4) is

(1(k1 < K)λ1 + 1(k3 < K)λ3 + 1(k3 > 0)μ
+ 1(k3 = 0)(ν1 + ν2))p(k1, k2, k3, 4)

= 1(k1 > 0)λ1p(k1 − 1, k2, k3, 4) + 1(k3 > 0)λ3p(k1, k2, k3 − 1, 4)
+ ν3p(k1, k2, k3, 0) + 1(k3 = 0)μp(k1, k2 + 1, 0, 6)
+ 1(k1 = 1)1(k3 > 0)λ1p(k1 − 1, k2, k3, 5)
+ 1(k1 < K)1(k3 = 0) {1(k2 > 0)μp(k1 + 1, k2 − 1, 0, 5)
+ 1(k2 = K)μp(k1 + 1, k2, 0, 5)} .

The global balance equation concerning p(k1, k2, k3, 5) is

(1(k1 < K)λ1 + 1(k1 > 0)μ + 1(k1 = 0)ν2 + λ3)p(k1, k2, 0, 5)
= 1(k1 > 0)λ1p(k1 − 1, k2, 0, 5)
+ 1(k1 = 0)1(k2 < K)μp(0, k2 + 1, 0, 7)
+ 1(k1 = 0)ν3p(k1, k2, 0, 1) + ν1p(k1, k2, 0, 4)

(λ1 + 1(k3 = 0)ν2 + 1(k3 > 0)μ + 1(k3 < K)λ3)p(0, k2, k3, 5)
= 1(k3 > 0)λ3p(0, k2, k3 − 1, 5)
+ 1(k3 = 0)1(k2 < K)μp(0, k2 + 1, 0, 7)
+ 1(k3 = 0)ν1p(0, k2, k3, 4) + ν3p(0, k2, k3, 1).

The global balance equation concerning p(k1, k2, k3, 6) is

(1(k1 < K)λ1 + 1(k2 > 0)μ + 1(k2 = 0)ν1 + λ3)p(k1, k2, 0, 6)
= 1(k2 = 0)ν3p(k1, k2, 0, 2) + ν2p(k1, k2, 0, 4)
+ 1(k1 > 0)λ1p(k1 − 1, k2, 0, 6)
+ 1(k2 = 1)1(k1 < K)μp(k1 + 1, 0, 0, 7)
+ 1(k1 = 1)1(k2 > 0)λ1(0, k2, 0, 7)

(1(k1 < K)λ1 + 1(k3 > 0)μ + 1(k3 = 0)ν1
+ 1(k3 < K)λ3)p(k1, 0, k3, 6)
= ν3p(k1, 0, k3, 2) + 1(k1 > 0)λ1p(k1 − 1, 0, k3, 6)
+ 1(k3 = 0)ν2p(k1, 0, k3, 4) + 1(k1 = 1)1(k3 > 0)λ1(0, 0, k3, 7)
+ 1(k3 > 0)λ3p(k1, 0, k3 − 1, 6).

Finally, the global balance equation concerning
p(k1, k2, k3, 7) is

(1(k1 < K)λ1 + 1(k1 > 0)μ + λ3)p(k1, 0, 0, 7)
= 1(k1 > 0)λ1p(k1 − 1, 0, 0, 7) + ν1p(k1, 0, 0, 6)
+ 1(k1 = 0)(ν2p(k1, 0, 0, 5) + ν3p(k1, 0, 0, 3))

(λ1 + λ3 + 1(k2 > 0)μ)p(0, k2, 0, 7)
= 1(k2 = 0)(ν1p(0, k2, 0, 6) + ν3p(0, k2, 0, 3)) + ν2p(0, k2, 0, 5)

(λ1 + 1(k3 < K)λ3 + 1(k3 > 0)μ)p(0, 0, k3, 7)
= 1(k3 = 0)(ν1p(0, 0, k3, 6) + ν2p(0, 0, k3, 5))
+ 1(k3 > 0)λ3p(0, 0, k3 − 1, 7) + ν3p(0, 0, k3, 3).
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