
A Novel Instruction Set for the Packet Processing on the Network ASIP

Won-young Chung1, Yeo-phil Yoon2, and Yong-surk Lee3.
School of Electrical and Electronic Engineering, Yonsei University

134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
Tel: +82-2-2123-2872, Fax: +82-2-312-4584,

E-mail: {1wychung, 2ypyoon}@dubiki.yonsei.ac.kr, 3yonglee@yonsei.ac.kr

Abstract: In this paper, we propose a new instruction set
for a network ASIP(Application Specific Instruction-set
Processor). The new instruction set was designed for the
packet processing engine on a network router. The network
ASIP to accelerate the packet processing operation was
built on a baseline ASIP, which is based on the general
RISC structure. The new instruction set is divided into two
groups. They are operated on each of its functional unit
within the execution stage. After the derivation of the HDL-
model from LISA, the functional units were replaced by a
hand-written Verilog-HDL.

1. Introduction
Recently, research on network have been focused on
BcN(Broadband convergence Network), and ALL-IP
convergence is the main trend in terms of the traffic
character [1][2]. Also, due to the development of IPTV,
VoIP, and VOD, multimedia packets have increased within
total network traffic. Due to the increase of multimedia
packets, the total network traffic, and the amount of
payload, the information has to be processed is growing
gradually. Because of the number of IP packets and the
limitation of the speed of the physical network, network
congestion occurs frequently. To improve the performance,
we should arrange a processor on each port of the router.
By designing the processor for the router, an ASIP has
more energy efficient network functions than general
processors or ASICs. Moreover, it is easily extended by
upgrading new software.

In this paper, we have designed a new instruction set and
its hardware blocks to accelerate the packet process. We
have named the designed hardware blocks NX(Network
eXtension) and the new instruction set uses it.

The contents of this paper are as follows. Section 2
explains the fundamental basics of the baseline ASIP used
in this paper and the ASIP with the NX for the network
specific ASIP. Also, explanations on the NX ISA
(Instruction Set Architecture), its operation, and its
functional unit structure are included. Section 3 describes
simulation results on the baseline ASIP and the proposed
network ASIP. Finally, Section 4 gives the concluding
remarks.

2. ASIP Design Flow
2.1. General ASIP

The general ASIP was designed based on a 5-stage pipeline
32-bit MIPS-DLX RISC(Reduced Instruction Set
Computer) architecture, as shown in Fig. 1. The EX
(execution) stage consists of functional units and the

functional units consist of two ALUs, one shifter, and one
multipler. It can operate basic arithmetic & Logical
instructions, branch instructions, and load & store
instructions, and so on [3].

2.2. Network ASIP

New instructions and the corresponding hardware blocks
for packet processing are added to the general ASIP. In
Section 2.2.1, the details of the new instructions are
explained, and in Section 2.2.2, the hardware blocks of the
new instructions are explained.

2.2.1 Proposed instruction sets (NX)

Packet communication based routers have to process many
packets within limited time. Comparing the specific bits of
the parcket header to the layer 2 MAC table is, generally,
the most frequently used operation. To accelerate the
operation, we have added new instrucions for bit
manipulation (SPECIFIC) and mask compare(COMPARE).
Table 1 shows the brief explaniations of the new
instructions.

• SPECIFIC Instruction set group
The SPECIFIC Instruction set group is comprised of set,

clear, test, and flip instrucions. Fig. 2 defines the instruction
format of the instruction group. The src_reg 2(the first bit
of the specific region) and the src_reg 3(the last bits of the
specific region) represent the specific region of the src_reg

Fig. 1 General ASIP

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

1161

1, and the results of its operation is stored in the dest_reg
through the MUX. Fig. 3 shows the operation of the test
instructions in the SPECFIC instruction group.

• COMPARE Instruction set group

The COMPARE instruction set group is comprised of
cmp, clz, cmpclz, mcmp, and mcmpclz, which are shown in
Fig. 4. The clz instruction has one source register, the cmp
and the cmpclz instruction has two source registers, and the
mcmp and mcmpclz have four source registers. Fig. 5
shows the operation of mcmpclz which is in the
COMPARE instruction group. The mask1 and mask2 is the
src_reg3 and src_reg4, respectively, and will be logically
AND operated with src_reg1 and src_reg2, respectively.
And after the AND operation, the results result1(AND
operation on src_reg1 with src_reg3) and result2(AND
operation on src_reg2 with src_reg4) will be compared with
each other and will return the tailing zero value of the
compared result between result1 and result2.

Table 1. NX insturctions

NX
Instruction set

group
Instruction Description

SPECIFIC set Sets the specific region to ‘1’.
rs2 : starting point, rs3 : ending
point

clear Clears the specific region to ‘0’.
rs2 : starting point, rs3 : ending
point

test Bitwise comparasion of specific
region, and sets rd=0 when all of
the bits are equal, and rd=1 when
non-equal.
rs2 : starting point, rs3 : ending
point

flip Bitwise flip operation of specific
region.
rs2 : starting point, rs3 : ending
point

COMPARE cmp Bitwise comparasion of rs1 and
rs2, and sets rd =0 when all of the
bits are equal and rd=1 when
non-equal.

clz Counts the leading zeros.
cmpclz cmp + clz
mcmp Mask operation on Rs1 and Rs3,

on Rs2 and Rs4. And compare
the result of the two masked
operation.

mcmpclz mcmp + clz

0 0 0 0

Comparator

src_reg1

src_reg2 src_reg3

0 0 0 1 0 0 0 0

0 0 0 . . .

Count the number of zeros

1 . . .

Leading Zero Counter

0 0 0 1 0 0 0 0

care Don’t
care care care Don’t

care care

& &

=

src_reg1

Result1

mask2mask1

src_reg2

Result2

=

2.2.2 Implementation

Table 2 shows the total operation cycles of the general
processor running the NX operations without the proposed
NX instructions. The clz instruction for example, due to the
fact that this instruction is not provided on a general
processor, can run on 32 cycles maximum per one clz in a
worst case within a 32-bit width register. So as to
implement the clz operation we have designed the specific
clz instruction by using LISA(Language for Instruction Set
Architecture) [4] and have added it on the NX extension
module. By the Coware Design compiler, the NX extended
processor model has been derived as a synthisalbe Verilog-
HDL model. But due to the non-efficient coding of the
automatically derived Verilog-HDL model, some HDL
optimizations were done by hand coding so as to satisfy the
required operation speed with the area of the network
application. Therefore, to optimize the functional units of
the proposed instruction sets, it was replaced with a fully
optimized hand-written verilog-HDL. Fig. 6 shows the
optimized functional units of the proposed instruction sets.

Fig. 2 SPECIFIC Instruction set of N-Extension

Fig. 4 COMPARE Instruction set of N-Extension

Fig. 3 test instruction

Fig. 5 mcmpclz instruction

1162

Table 2. NX insturctions
NX

Instruction set
group

Instruction Description

set sub(3), shift(2), or(1) 6
clear sub(3), shift(2), not(1),

and(1)
7

test sub(3), shift(2), cmp(1) 6
flip sub(5), shift(11), not(1),

or(2)
19

cmp cmp(1) 1
clz clz(1) 1

cmpclz cmp(1), clz(1) 2
mcmp cmp(2), clz(1) 3

mcmpclz cmp(2), xor(1), clz(1) 4

• U_SPECIFIC
The U_SPECIFIC has a 'Mask generator' which masks a

specific region to '1' and '0' in 32-bit data with the src_reg2
and src_reg3. The value of the Mask generator and the
src_reg1 is sent to the 'Bit engine' and four different
SPECIFIC instructions are operated. The result is selected
by the lower 2-bit in the function code and is sent to the
EX/MEM pipeline register.

• U_COMPARE
At the U_COMPARE, the [2:1] bit of the function code

is sent to the MUX2 as the control signal. If the [2:1] bit of
the function code is all '0', it represents a clz instruction,
and in other cases the data of the src_reg2 is sent to the
result. The [2] bit of the function code is sent to the MUX1
and MUX3 as a control signals, and if the signal is '1' it
send the src_reg3 and the src_reg4 to the result, or it send
32'b1 data to the result in cases where the [2] bit is '0'. The
[0] bit of the function code is used as a control signal for
MUX4, and this determines a CLZ block operation when
the value is '1'. The CLZ block was designed using the
Leading One Detector on [5] so as to decrease the
throughput.

3. Experiment and Result
To evaluate the performance of the proposed network ASIP,
we have used three ASIP models. The first ASIP model is a
general basic ASIP without the NX instruction sets. The
second is the ASIP model with the N-Extension functional
units, but is without the NX optimization. Last, the third
model is the optimized model of the second model.
Table 3 shows the synthesis results by using the Dong-Bu
0.18um CMOS library using the Synopsys Design
Compiler. The non-optimized model had a 26.8% area
increase compared to the original basic ASIP, and the
optimized model had a 25.7% area increase compared to
the original basic ASIP.

Table 3. Total area of each evaluation models
(Eq.NAND2x1)

ASIP model Basic Non-
optimize Optimize

Total area
[gate]

(Normalized)

80840.003
(1)

102526.336
(1.268)

101616.337
(1.257)

Table 4. Area and the operating speed of functional units in
EX stage

Area[gate]

(time[ns])
Basic Non-

optimize
Optimize

NX
U_ALU0 2076.333

(1.89)
U_ALU1 405.666

(2.27)
U_MULT 8758.666

(3.76)
U_SHFT 3363.333

(2.37)
U_COMPARE 0 763.999

(3.35)
379.666
(2.55)

U_SPECIFIC 0 4520.000
(3.75)

3312.346
(2.99)

Table 4 shows the area and the operating speed of each

functional unit on the EX stage. As the critical path of the
5-stage pipeline laid on the EX stage, the operating speed of
the EX-stage determines the total operating speed of the
processor. As the result of each unit synthesis, the
U_MULT block had the slowest operating speed. The
maximum operating speed had about 156.Mhz(6.38ns). For
optimization of the processor, there was no need to
optimize the U_COMPARE and the U_SPECIFIC unit, but
it is best to optimize these for the cases where the processor
used in the router does not use the multiplication unit. So it
was considered best to optimize the two new units. As a
result of the optimization, the operation speed increased
about 23.9%, 20.3% and the area decreased about 50.3%,
26.7% for the U_COMPARE and the U_SPECIFIC
respectively.

Fig. 6 NX Function Unit

1163

4. Conclusion
In this paper, we proposed new instruction sets to design a
new network ASIP. The proposed instruction functional
unit block, U_COMPARE and U_SPECIFIC, had
respective operating speeds of 2.55ns and 2.99ns with the
equivalent gate of 379.666 and 3312.346, when synthesized
by using the Dong-Bu 0.18 CMOS library. By using the
proposed instruction sets, it can operate the packet
processing with fewer instructions than a general processor.
Due to the decreased operating packet processing code size
and the operating speed, it can be seen as an appropriate
hardware accelerator for the router.

7. Acknowledgments
This work was supported by ETRI (Electronics and
Telecommunications Research Institute) from the Research
Program of multimedia convergence network on chip
technology. EDA tools which were used in this work were
supported by the IC Design Education Center (IDEC).

References
[1]R. M. Hinden, “IP Next Generation Overview,”
Commun. ACM, vol. 39, no. 6, 1996, pp. 61–71.
[2]Scott Weber and Liang Cheng, “A Survey of Anycast in
IPv6 Networks,” Communications Magazine, IEEE, Vol.42,
Jan 2004, pp 127- 132.
[3]Ha-young Jeong, Hyoung-pyo Lee, and Yong-surk Lee,
“A Low-cost Multimedia ASIP Architecture for
H.264/AVC,” The 22nd International Technical Conference
on Circuits/Systems, Computers and Communications(ITC-
CSCC 2007), Vol.2, July 2007, pp. 777-778.
[4]Andreas Hoffmann, Tim Kogel, Achim Nohl, etc. “A
Novel Methodology for the Design of Application-Specific
Instruction-Set Processors(ASIPs) Using a Machine
Description Language,” IEEE Transactions on Computer-
AIDED design of intergrated circuits and systems, Vol.20,
No 11, November 2001.
[5]H. Suzuki, et. Al, “Leading-Zero Anticipatory Logic for
High-Speed Floating Point Addition,” IEEE Journal of
Solid-State Curcuits, vol. 31, No. 8, August 1996.

1164

