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Abstract: N -continuous symbol padding orthogonal fre-

quency division multiplexing (NCSP-OFDM) is a modulation

technique that achieves a lower-sidelobe transmission signal

by precoding data symbols. However, the precoding requires

a wide dynamic range arithmetic. This study considers two

decompositions of the precoder matrix for a low-end field-

programmable gate array (FPGA) without DSP blocks. Re-

sults of numerical experiments and a test design confirm that

the singular value decomposition is suitable for FPGA imple-

mentation.
Keywords— OFDM, sidelobe suppression, precoding, FPGA imple-

mentation, singular value decomposition

1. Introduction
Orthogonal frequency division multiplexing (OFDM) has

been adopted in several telecommunications technologies ow-

ing to the advantages of fast data transmission and robustness

against multipath fading. However, one problem associated

with OFDM is that high sidelobes arise from the discontinuity

between adjacent OFDM symbols. Various methods of side-

lobe suppression have been proposed [1]–[4] including N -

continuous OFDM [5] that is a modulation technique in which

the OFDM symbols are continuously connected with higher-

order derivatives. This technique does not require an extended

guard interval nor the insertion of a wide guard band or can-

cellation carriers. However a disadvantage of N -continuous

OFDM is that it forces the receiver to use an iterative algo-

rithm that increases the computational complexity, in order

to eliminate the correction symbol inserted for the continu-

ous connection of OFDM symbols. We have proposed N -

continuous symbol padding OFDM (NCSP-OFDM) [6], in

which the correction symbol is added only into the guard in-

terval to enable the seamless connection of OFDM symbols.

The receiver for NCSP-OFDM does not require the iterative

algorithm because the correction symbol does not leak to the

data block following the guard interval.

The precoder matrix used in this method is derived from

a matrix whose elements are integers ranging from 1 to

(K/2)N (K = 300 and N = 3 in Ref.[5]), which represents

a wide dynamic range. Precoding using this matrix requires

floating-point arithmetic, which consumes a large number of

slices on a field-programmable gate array (FPGA). Although

a DSP block in an FPGA performs floating-point arithmetic

without other resource consumption, there are only a few DSP

blocks in a low-end FPGA device, and these blocks should be

available for other functional blocks such as the fast Fourier

transform and finite impulse response filters.

We consider here two decompositions of the precoder ma-

trix of NCSP-OFDM for FPGA implementation and clarify

the matrix decomposition suitable for a low-end FPGA with-

out DSP blocks.

2. NCSP-OFDM
The NCSP-OFDM signal is written as

s(t) =

∞∑
i=0

si(t− i(Ts + Tg)), (1)

where Ts is the OFDM symbol duration and Tg is the guard

interval length. The i-th NCSP-OFDM symbol si(t) can be

expressed with the following formula:

si(t) =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈K

d̄i,ke
j2π k

Ts
t, −Tg ≤ t < 0,

∑
k∈K

di,ke
j2π k

Ts
t, 0 ≤ t < Ts,

(2)

where d̄i = [d̄i,k0 , . . . , d̄i,kK−1
]T is the result of pre-

coding data symbol di = [di,k0 , . . . , di,kK−1
]T , K =

{k0, . . . , kK−1} is a set of data subcarrier indices, and K is

the number of subcarriers.

The symbol si(t) satisfies the following constraints so that

the symbols in the guard interval are continuous with both the

preceding and following symbols at the connecting bound-

aries until the N-th order derivative.

dn

dtn
si(t)

∣∣∣∣
t=−Tg

=
dn

dtn
si−1(t)

∣∣∣∣
t=Ts

, (3)

dn

dtn
si(t)

∣∣∣∣
t=−0

=
dn

dtn
si(t)

∣∣∣∣
t=+0

, (4)

where n ∈ {0, . . . , N}. The constraints can be expressed in

matrix form as[
AΦ
A

]
d̄i =

[
O(N+1)×K

A

]
di+

[
A

O(N+1)×K

]
di−1, (5)

where

A =

⎡
⎢⎢⎢⎣

1 1 . . . 1
k0 k1 . . . kK−1

...
...

. . .
...

kN0 kN1 . . . kNK−1

⎤
⎥⎥⎥⎦ , (6)

Φ = diag(ejφk0 , . . . , ejφkK−1), and φ = −2πTg/Ts.

We have proposed a method to precode the symbol di to

d̄i such that

d̄i = di +wi, (7)

wi = −Pdi +PΦH d̄i−1. (8)
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Here,

P =

[
AΦ
A

]† [
IN+1

ON+1

]
AΦ , (9)

where X† is the Moore–Penrose pseudoinverse of X. This

precoding satisfies (3) and (4), and the inserted symbol wi

has the smallest power in a Euclidean sense. The matrix P is

referred to here as the precoder matrix.

3. Matrix Decompositions
The computational complexity of (8) is O(K2) in multi-

plications, which results in an enormous computational load.

To reduce it for FPGA implementation, we consider two de-

compositions of the precoder matrix of NCSP-OFDM.

First, from (9), letting

P1 =

[
AΦ
A

]† [
IN+1

ON+1

]
, (10)

P2 = AΦ, (11)

we can decompose P as

P = P1P2. (12)

Therefore we can rewrite (8) as

wi = P1(P2xi), (13)

where xi = −di +ΦH d̄i−1. This decomposition is referred

to here as D1. Using this decomposition, the complexity of

(8) reduces to O(KN), because the sizes of P1 and P2 are

K × (N + 1) and (N + 1)×K.

Second, we can apply singular value decomposition

(SVD). Using SVD, P can be decomposed as P = USVH ,

where U and V are K×K unitary matrices, and S is a K×K
diagonal matrix containing the singular value of P in non-

increasing order along its diagonal. The rank of P is less than

or equal to N + 1 (see Appendix), and the last K − (N + 1)
diagonal elements of S are zero. Letting Q be a K× (N +1)
matrix composed of the first N + 1 columns of a matrix US,

and R be a (N + 1)×K matrix composed of the first N + 1
rows of VH , we can decompose P as

P = QR. (14)

Therefore we can rewrite (8) as

wi = Q(Rxi). (15)

This decomposition from SVD is referred to as D2. Using this

decomposition, the complexity of (8) also reduces to the same

as that of D1, because the sizes of Q and R are same as those

of P1 and P2. For example, the computational load reduces

to 1.3% of that under the conditions in Ref.[5]: K = 300 and

N = 3.
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Figure 1. Histogram of the powers of all the elements of the

matrices P1, P2, Q, and R.

4. Analysis and Evaluation
In this section, the two decompositions D1 and D2 are

compared in an implementation on an FPGA. First of all, we

investigated the dynamic ranges of the elements in the matri-

ces for D1 and D2 (K = 180, N = 3 and K = 300, N = 3).

Figure 1 shows the histogram of the powers of all the ele-

ments of the matrices P1, P2, Q, and R. From these figures,

we see that the dynamic ranges of Q and R are narrower than

those of P1 and P2. This indicates that D2 is better than D1
for implementing the precoding using fixed-point arithmetic

on an FPGA.

Next, we measured the power spectral density (PSD) and

the symbol error rate (SER) by using floating-point and fixed-

point arithmetic for a multiply-and-accumulation (MAC) op-

eration. In calculation, we considered 16-bit fixed-point

(“Fix16”) MAC operations, 32-bit fixed-point (“Fix32”), and

16-bit floating-point (“float16”). The “Ideal” results are those

of normal numerical experiments of NCSP-OFDM obtained

using MATLAB (double-precision floating-point arithmetic).

Figure 2 shows that the PSD of D2 is superior to that of D1.

The result is caused by the narrow dynamic range of D2. Fig-

ure 3 shows the SER in the additive white Gaussian noise

channel. The result shows that the D2 does not degrade the
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(b) K = 300, N = 3

Figure 2. Power spectral density using D1 and D2.

SER.

Finally, D2 was implemented on an FPGA without DSP

blocks, and the circuit scale was evaluated with K = 180
and N = 3. The circuit configuration of NCSP-OFDM was

designed using VHDL on Xilinx ISE 14.7. The target device

was a Xilinx FPGA XC6SLX45. Table 1 shows the report

of the design implementation. We also present in this table

the size of an IFFT for reference. For example, the occupied

slices for “Fix16” was found to be 39.0% of that for “float16”

and 35.3% of that for “Fix32”. This verifies that D2 with the

SVD is effective for implementing NCSP-OFDM on a low-

end FPGA.

TABLE I.

Synthesis report of each block (K = 180, N = 3).

Resource D2-Fix16 D2-float16 D2-Fix32 IFFT

Slice Registers 3, 528 6, 394 11, 648 2, 409
Slice LUTs 2, 977 7, 915 10, 735 1, 668

Occupied Slices 1, 121 2, 897 3, 276 572
Block RAMs 0 0 0 1

BUFG/BUFGMUXs 1 4 1 1
DSP48A1s 0 0 0 12
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Figure 3. Symbol error rate using D1 and D2.

5. Conclusions
We have considered the two decompositions of the pre-

coder matrix of NCSP-OFDM for FPGA implementation.

The SVD method was confirmed to allow precoding with a

narrow dynamic range and is suitable for implementation on

a low-end FPGA.

Appendix
Here we prove

rank(P) ≤ N + 1. (16)

Firstly, from the theorem of the rank of matrix product, we

can obtain about the rank of P = P1P2 such as

rank(P) ≤ min {rank(P1), rank(P2)} . (17)

Generally, the rank of matrix is less than or equal to the num-

ber of rows or columns. So we can obtain

rank(P1) ≤ N + 1, (18)

rank(P2) ≤ N + 1. (19)

From (17), (18) and (19), we obtain (16).

115



References

[1] S. Brandes, I. Cosovic, and M. Schnell, “Reduction of

out-of-band radiation in OFDM systems by insertion of

cancellation carriers,” IEEE Commun. Lett., vol. 10, no.

6, pp. 420–422, June 2006.

[2] I. Cosovic, S. Brandes, and M. Schnell, “Subcarrier

weighting: a method for sidelobe suppression in OFDM

systems,” IEEE Commun. Lett., vol. 10, no. 6, pp. 444–

446, June 2006.

[3] T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral,

“Mutual interference in OFDM-based spectrum pooling

system,” Proc. IEEE Veh. Technol. Conf.,, vol. 4, pp.

1873–1877, May. 2004.

[4] H. A. Mahmoud, and H. Arslan, “Sidelobe Suppression in

OFDM-Based Spectrum Sharing Systems Using Adop-

tive Symbol Transition,” IEEE Commun. Lett., vol. 12,

no. 2, pp. 133–135, Feb. 2008.

[5] J. van de Beek, and F. Berggren, “N -continuous OFDM,”

IEEE Commun. Lett., vol. 13, no. 1, pp. 1–3, Jan. 2009.

[6] H. Kawasaki, M. Ohta, and K. Yamashita, “N -continuous

Symbol Padding OFDM for Sidelobe Suppression,” Proc.

of IEEE ICC 2014, pp. 5901–5906, June, 2014

[7] M. Ohta, K. Torigoe, H. Kawasaki, and Katsumi Ya-

mashita, “Matrix Decomposition Suitable for FPGA Im-

plementation of N-continuous OFDM,” Proc. of Int.

Conf. on Information and Communication Technology

Convergence ICTC 2014, pp. 413–415, Oct., 2014

116


