
Test Case Generation of Concurrent Programs Based On Event Graph

Zuohua Ding1,2, Kao Zhang1 and Jueliang Hu1

1Center of Mathematical Computing and Software Engineering
Zhejiang Sci-Tech University

Hangzhou, 310018, P.R. China
2National Institute for Systems Test and Productivity

University of South Florida
Tampa, FL 33620, U.S.A

E-mail : zouhuading@hotmail.com

Abstract: This paper attempts to generate test cases for con-
current programs based on event graph. Through the analy-
sis of state transition of event graph, sub-event-graphs can be
generated. Each sub-event-graph corresponds to a test case.
We may get benefits from this method in the following. 1)
While executing the test case, we can monitor the state tran-
sition. 2) Every sub-event-graph is an execution path, or a
simulation, thus all test cases are feasible. 3) Since the num-
ber of states in the event graph is finite, it is not likely to hit
state explosion problem in the test generation process.

1. Introduction

A concurrent program specifies two or more processes (or
threads) that cooperate in performing a task. Each process
is a sequential program that executes a sequence statements.
The processes cooperate by communicating using variables
or message passing. One way to check that a concurrent pro-
gram correctly implements its specification is to execute the
program with a set of test sequences. A test sequence repre-
sents a sequence of actions performed by the concurrent pro-
cesses in the program. These actions are often interprocess
communications such as sending and receiving messages.

The testing of concurrent programs is difficult due to the
inherent nondeterminism in these programs. That is, if we run
a concurrent twice with the same test input, it is not guaran-
teed to return the same output both times. This nondetermin-
ism causes two significant test automation problems: 1) it is
hard to force the execution of a given program statements or
branch and 2) it is difficult to automate the checking of test
outputs.

To handle these problems, in this paper, we use event graph
to simulate the behavior of concurrent programs. The test
generation activities are based on the event graph model in-
stead of the underlying source code. This abstraction model
describes a program’s execution by occurring state changes
and their interactions on concurrently executing processes,
which allows to cope equally with the programs based on the
interaction mechanism.

Informally speaking, an event graph is a timed and condi-
tioned directed graph representing discrete-event simulation
models, each vertex representing an event, and each edge rep-
resenting a relationship between events. The event graph can
simulate both synchronous and asynchronous models with ar-
bitrary timing delays. Thus the event graph can handle the
nondeterminism caused by undecided event ordering, such as

by message passing and resource sharing.
Here is the simple description of our process to generate

test cases. First we model a concurrent program by event
graph, then generate sub-event-graph by analyzing the migra-
tion of event states according to event graph. Finally, generate
test cases according to sub-event-graph. This method has the
following characteristics: 1) while executing the test case, we
can monitor the state transition. 2) Since every sub-event-
graph is a execution path, or a simulation, all test cases are
feasible. 3) Since the number of all states in the event graph
is finite, it is not likely to hit state explosion problem in the
process of generating test cases.

This paper is organized as the following. Section 2 in-
troduces event graph and the regulation of the state transition.
Section 3 shows the process how to generate sub-event-graph.
Section 4 gives an example. Section 5 is the conclusion of the
paper.

2. Event Graph

Schruben (1983) [5] introduced Event Graphs (EGs) as
a technique for graphically representing discrete-event sim-
ulation models. EGs have one basic construct with two ele-
ments: events represented by vertices, and relationships be-
tween events represented by edges. The relationships can
be scheduling (i.e., execution of one event schedules another
event) or canceling (i.e., execution of one event cancels an-
other event). Additionally, they can be conditional and time
dependent. Finally, the relationships can be parameterized to
assign values to state variables when an event is executed (see
Schruben [5] for more details on the event-graph constructs).
Event graph can be used to describe program models. For ex-
ample, in [1], event graphs are used to describe the model of
Verilog. In this paper, with some modification, we will use
event graph to describe the behavior of concurrent programs.

2.1 Event

Different definition of event may lead to different graph
model. Before we give the definition to events, we give the
definition of program execution states.

Definition 2.1.1: (Program State) A program state is de-
fined as: a group of variables’ values have been changed.

Definition 2.1.2: An event is defined as an activity of the
program and can change the states of the program.

Events are regarded as instantaneous. If we wish to repre-
sent an activity with duration, we must introduce two events

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

1117

to represent its start and finish so that other events can occur
between them. The semantics of the original language deter-
mines the boundaries between events. Typical events might
be send message, receive message, user defined event/action,
read, write, system events, etc.

2.2 Edge and Timestamp

An edge represents a relationship between two events. An
event may schedule another event for execution through edge.
Edges contain three kinds of information: condition, duration
time, and priority.

An edge with condition is used to provide the execution
direction if more than one event could be scheduled. The con-
dition is based on the boolean expression from control state-
ment. Two types of control statements will be considered:
branch and loop. An edge with duration time indicates that
occurrence time from one event to another event. An edge
with priority is used when processes are interacting based on
the resources/services. If an edge has both time and priority,
we should consider the priority first.

To order the events, we still adopt Lamport’s ”happened
before” relation[3] between events:
• If a and b are events in the same process, and a comes be-
fore b , then a → b
• If a is the sending of a message by one process and b is the
receipt of the same message by another process, then a → b.
• If a → b and b → c, then a → c.
The independent relation a and b are said to be concurrent if
a �→ b and b �→ a.

Since a duration time is attached with each edge, every
event must have a timestamp, or instantaneous occurrence
time. To compute the timesatmps, global clock will be used.
The following are the rules in the computing. Let v1, v2 and
v3 be three events and the computing operation is denoted as
Cmpt(v).

True False

v1(t1)

v2(t2) v3(t3)

(a)

v1(t1) v2(t2)

v3(t3)

(b) (c)

v1(t1) v2(t2)

v3(0)

p1
p2d1 d2

v1(t1)

v2(t2)

d1

(d)

d1 d2 d1 d2

Figure 1. Cases to compute timestamps.

1. One event to one event. Assume that v1 can activate v2.
The timestamp for v1 is t1. Let d1 be the duration time on
the edge from v1 to v2. Then the timestamp of v2 will be
t2 = t1 + d1. See Figure 1(a).
2. One event to more events. Assume v1 can activate v2 or v3

based on the condition. If the boolean expression is evaluated
as true, then activate v2, otherwise activate v3. Let d1 and d2

be the duration time on the edges. Then the timestamps of v2

and v3 can be calculated as t2 = t1 + d1 and t3 = t1 + d2,
respectively. See Figure 1 (b).

3. Assume that v1 and v2 together will activate v3 to execute.
Assume that v1 has timestamp t1 with duration time d1 on the
edge and v2 has timestamp t2 with with duration time d2 on
the edge. Then the timestamp of v3 will be t3 = max(t1 +
d1, t2 + d2). See Figure 1 (c).
4. Assume that both v1 and v2 need to be activated by v3, but
the edge to v1 has higher priority p1. Let d1 and d2 be the
duration time on the edges. If v1 is activated by v3 first, then
the timestamp for v1 will be updated to t1 = t1 + d1. If v2

is activated by v3 first, and t2 + d2 < t1, then the timestamp
of v2 will be updated to t2 = t2 + d2. If v2 is activated by
v3 first, and t2 + d2 > t1, then the execution of v2 will be
preempted by the execution of v1. Thus the timestamp of v2

would be t2 = t2 + d2 + d1. See Figure 1 (d).

2.3 Event Graph

Event graph is composed by events and edges between
events. We use vertices to represent events and use directed
edges to represent the relation between events.

An event graph is described as G =< V, V0, Et, Ep, Eb >,
where
• V is the set of events,
• V0 ∈ V is the set of start events,
• Et ⊂ V × V × T , where T is the set of duration time.
• Ep ⊂ V × V × P , where P is the set of priority.
• Eb ⊂ V ×V ×B, where B is the set of boolean expressions.
For more information of event graph, we refer to [5].

3. Generating Sub-Event-Graph

In the execution of event graph, we need to use memory
store M to map each variable to its current value. We also
assume the existence of the following operation:
• Chgd(v, x, M) indicates if the execution of event v with
initial memory store M changes the value of expression x.

Thus after each step of the execution, the current events
and the memory store will be updated. Of course the time
stamps of events and the variables are updated. Since the time
stamps are associated with events and the variable values are
stored in the memory store, we may use s = (V, M) to de-
note the execution state. If we use operation Exec to denote
the execution, then we get (V ′, M ′) = Exec(V, M). The
algorithm of Exec(V, M) is described as the following.
• Check the timestamp at each event of V and pick the event
with the smallest timestamp. Assume this event is ei.
1. If there is only one edge from this event, and the end

event is ei+1, then compute the timestamp and the variable
values at ei+1 by Cmpt(ei+1) and Chgd(ei+1, s, M).
2. If are more than two edges from this event, and assume

the associated conditions are bk
i , then apply Eval(bk

i , M).
If someone is true, say b1

i , then compute the times-
tamp and the variable values at e1

i+1 by Cmpt(e1
i+1) and

Chgd(e1
i+1, s, M).

3. If there is an edge coming into ei with priority, and let e0

be the event emitting this priority. Let di0 be the duration time
attached on the edge ei → e0. Then check all the priorities
from e0.

1118

(a) If the priority to ei is the highest one, then update the
timestamp and the variable values at ei by Cmpt(ei) and
Chgd(ei, s, M).
(b) If the priority to ei is not the highest one, then check

if the event has be preempted. (1) If no, then execute. If
no preemption happens in the execution, then update the
timestamp and the variable values at ei by Cmpt(ei) and
Chgd(ei, s, M). If some preemption happens in the exe-
cution, then denote this event as an intermediate event, still
has the same priority, meanwhile compute the timestamp at
ei and the remaining execution time. (2) If yes, then con-
tinue the execution. If the execution can be successfully
executed, then update the time stamp of ei by ti = ti +
waiting−time+remaining−time, and the variable values
by Chgd(ei, s, M).
• If there are more than one event with the smallest times-
tamp, then comparing the priorities. The edge with the high-
est priority will be the execution direction. If no priorities as-
sociated with the edges, then pick any edge as the execution
direction.

Finally, the simulation of an event graph G is a sequence
of states s0, s1, . . . ,⊥, where
• s0 =< V0, M0 >,where M0 represents the initial memory
store that maps every variable to an appropriate initial value.
• si+1 = Exec(si).
• ⊥ is the end state.

Meanwhile, we will get a set of events. We give a name to
such kind of sets, namely, SYN-sequences. Formally we have
a definition:

Definition 3.0.1: [4] The SYN-sequence Q exercised by a
concurrent execution is defined as a tuple (Q1, Q2, . . . , Qn; φ),
where Qi is the totally ordered sequence of sending and re-
ceiving events that occurred on a thread(process) or a syn-
chronization object and φ is the set of synchronization pairs
exercised in the execution.

For a concurrent program, a test case is actually a SYN-
sequence based on the following coverage criteria:
1. Event Coverage Criterion - All events are executed at least
once.
2. Edges Coverage Criterion - All Edges should be covered
at least once.

The process to generate SYN-sequences can be described
as the following expression:

V
V−−−−−−−→

Exec(V,M)
V1

V1−−−−−−−−→
Exec(V1,M)

V2 . . .
Vn−−−−−−−→

Exec(V,M)
⊥.

Vn in the expression is the SYN-sequence, or the test case.

4. Case study
We takes an example from [2] as shown in Figure 2. The

example is one of a single-server queueing system that has
two types of customers. Of the two types of customers, cus-
tomer type 1, has the highest priority. If a type 2 customer
is in service when a type 1 customer arrives, the type 2 cus-
tomer is preempted by the type 1 customer and will wait until
all type 1 customers have been served.

The state variables for this system are defined as:

ENT1(t1)

ENT2(t4)

ST1(t2) LV1(t3)

ST2(t5) LV2(t6)

Q1 = Q1 + 1

Q2 = Q2 + 1

S = S − 1

Q1 = Q1 − 1
t2 = t1 + d1

d1 d2

d3 d4

p1

p2

d5

d6

S = S − 1
Q2 = Q2 − 1
t5 = t4 + d3

t3 = t2 + d2

t6 = t5 + d4

S = S + 1

S = S + 1

Server(0)

d7

d8

Figure 2. Single-Server Preemptive System

• Q1 and Q2 : The number of customers in queue 1 and
queue 2, respectively.
• S: Server Status: 1 = available, 0 = busy.
• Preemptive: Preemptive status: 1 = Preemptive, 0 = no pre-
emptive.
The events of the system are:
• ENT1 : When a customer enters the system, ENT1 will
change Q1 to Q1 + 1.
• ST1 : the customer starts his service and changes the values
of S and Q1.
• LV1 : the customer finishes his service and releases the
server.
• ENT2 : When a customer enters the system, ENT2 will
change Q2 to Q2 + 1.
• ST2 : the customer starts his service and changes the values
of S and Q2.
• LV2 : the customer finishes his service and release the
server.
• Server : the system event to allocate the server.
• Preemptive : Preemptive = 1 force to stop the current
customer getting the server.

When a type 1 customer enters the system(ENT1), if there
is a server available, the customer starts his service(ST1) and
then finishes his service(LV1) and releases the server. When a
type 2 customer enters the system(ENT2), if there is a server
available, the customer starts his service(ST2) and then fin-
ishes his service(LV2) and release the server. So both ENT1

and ENT2 can be activated by Server which are allocated
by comparing priority. The customer with the higher priority
will be executed first.

There are about 5 cases here and they are:
1. Each of Q1 and Q2 has only one customer in the queue.
Event ENT1 and ENT2 are activated at the same time. As-
sume that d2 > d3 + d5, and thus ENT1 starts to execute
after ENT2 finishes.
2. Each of Q1 and Q2 has one customer in the queue. Event
ENT1 and ENT2 are activated at the same time. Assume
that d2 < d3.
3. Each of Q1 and Q2 has one customer in the queue. Event

1119

ENT1 and ENT2 are activated at the same time. Assume
that d3 < d2 < d3 + d5.
4. Q1 has more than one customer and Q2 has only one cus-
tomer. Assume Q1 has two customers. Once the first cus-
tomer is done with the service, the second customer will be
served immediately. Event ENT1 and ENT2 are activated
at the same time. Assume that d3 < d2 < d3 + d5 and
2 × d2 < d5.
5. Q1 has one customer 1 and Q2 has one customer 2. As-
sume another customer 1 will come later and d2 > d3. Event
ENT1 and ENT2 are activated at the same time.

For example, to generate test cases for case 5. The process
can be described as the following (to save space, we use ē to
represent that the event e is executing, otherwise we need to
assume the head and tail events):
• The state of V0 is V0 = {ENT1, ENT2}.
• ENT1 and ENT2 transit to the next events respectively.
d2 > d3 shows that customer 2 activates ST2 when ENT1 is
in the processing of the transition. So V1 = {ENT1, ST2}
• Server is available and ST2 can get the Server successfully.
Monitor records the pairs (Server, ST2).
• when event ST1 is activated, ST2 is in the transition. So V2

is V2 = {ST1, ST2}.
• since Event ST1 has higher priority, it can get the server
which is occupied by ST2. Thus p1 has higher priority than
p2 to interrupt the executing of ST2, and force ST2 to release
the server. So V3 = {ST1, ST2, P reemptive}.
• Recording the pairs (Sever, ST1) by monitor. ST1 contin-
ues the executing after getting the sever and transits to LV1.
Meanwhile ST2 is blocked. Thus, V4 = {LV1, ST2}.
• After finishing LV1, LV1 releases the server to ST2 and the
current state status of Q1 is 0. ST2 gets the Server and goes on
executing. While ST2 is still in transition, another customer
1 enters the system. So V5 = {ENT 1

1 , ST2}.
• When LV2 is activated, ENT 1

1 starts the transition. So
V6 = {ENT 1

1 , LV2}.
• Customer 2 is done and release the Server, and then ST 1

1 is
activated. So V7 = {ST 1

1 , ∅}.
• Event ST 1

1 gets the server successfully and continues the
execution. Monitor records pairs (Server, ST 1

1). V8 =
{LV 1

1 , ∅}.
• Customer 1 finishes all and release Server. V9 = {∅, ∅}.

The above steps can be summarized in the following ex-
pression:

V0 −→ V1
(Server,ST2)−−−−−−−−→ V2 −→ V3

(Server,ST1)−−−−−−−−→ V4

−→ V5 −→ V6 −→ V7
(Server,ST 1

1)−−−−−−−−−→ V8 −→ V9

= {ENT1, ENT2} −→ {ENT1, ST2}
(Server,ST2)−−−−−−−−→ {ST1, ST2}
−→ {ST1, ST2, P reempitve}
(Server,ST1)−−−−−−−−→ {LV1, ST2} −→ {ENT 1

1 , ST2}
−→ {ENT 1

1 , LV2} −→ {ST 1
1 , ∅}

(Server,ST 1
1)−−−−−−−−−→ {LV 1

1 , ∅} −→ {∅, ∅}
= {{ENT1, ST1, LV1, , ENT 1

1 , ST 1
1 , LV 1

1 },

{ENT2, ST2, LV2}, {Preemptive};
(Server, ST2), (Server, ST1), (Server, ST 1

1)}

For other cases, the test cases are:

1. {{ENT1, ST1, LV1}, {ENT2, ST2, LV2};
(Server, ST2), (Server, ST1)}

2. {{ENT1, ST1, LV1}, {ENT2, ST2, LV2};
(Server, ST1), (Server, ST2)}

3. {{ENT1, ST1, LV1}, {ENT2, ST2, LV2},
{Preemptive};
(Server, ST2), (Server, ST1)}

4. {{ENT1, ST1, LV1, , ENT
′
1, ST

′
1, LV

′
1},

{ENT2, ST2, LV2},
{Preemptive, Preemptive

′};
(Server, ST2), (Server, ST1), (Server, ST

′
1)}

5. Conclusion
This paper simulated the concurrent programs by event

graph. Sub-event-graphs have been generated through the
analysis of state transition of event graph. Each sub-event-
graph corresponds to a test case. According to the theorem 1
in[1] (The number of possible static simulation states for any
event graph is finite), the process to generate test cases will
not hit the problem of state explosion. For the future work
we will investigate how to find the least number of sub-event-
graphs to cover all the events, in other words, how to find the
minimum of test cases.

Acknowledgments
This work is partially supported by the National High-

Tech Research and Development Plan of China under Grant
No.2006AA01Z165.

References

[1] R. S. French, M. S. Lam, A general method for com-
piling event-driven simulations. In: Proceedings of 32nd
ACM/IEEE Design Automation Conference, pp. 151-156,
1995.

[2] R. G. Ingalls, D. J. Morrice, E. Yúcesan, A. B. Whin-
ston, Execution conditions: a formalization of event can-
cellation in Ssimulation graphs, Journal on Computing,
vol.15, no.4, pp.397-411, 2003.

[3] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Communications of the ACM, vol.21,
no.7, pp. 558-565, July, 1978.

[4] Y. Lei and R.H.Carver, Reachability testing of concurrent
programs, IEEE Transactions on Software Engineering ,
vol.32, no.6, pp.382-403, 2006.

[5] L. W. Schruben, Simulation modeling with event graphs,
Communications of ACM, vol.26, pp.957-963, 1983.

1120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

