
Design of Low-Power Asynchronous MSP430 Processor Core 

Using AFSM Based Controllers 
 

Myeong-Hoon Oh1, Chihoon Shin2, and Seongwoon Kim1  
1 Electronics and Telecommunications Research Institute (ETRI) 

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, Korea  

2 School of Engineering, University of Science and Technology (UST) 
113 Gwahangno, Yuseong-gu, Daejeon, 305-333, Korea  

E-mail: 1mhoonoh@etri.re.kr, 2chsin@etri.re.kr 
 

Abstract: As an asynchronous design method, TiDE tool 
chain supports the robust design flow at a high level with an 
asynchronous specialized language, HASTE. However, 
there is a limitation at an optimized step, since it is difficult 
for designers to know and manage inner synthesis 
operations. With a button-up manner based on the synthesis 
method with asynchronous finite state machine (AFSM), 
we design an asynchronous MSP430 core which is widely 
used in the sensor nodes. 

The designed asynchronous MSP430 core was compared 
with an already designed asynchronous MSP430 core 
which employed the TiDE tool flow and a clock based 
synchronous MSP430 core at 0.13 um CMOS technology. 
The maximum performance of the TiDE tool version was 
only 40.6 % of the synchronous or the AFSM version. The 
AFSM version saves the energy consumption of the 
synchronous version and the TiDE tool version by about 
31.9 % and 28.8 %, respectively. 
 
 

1.  Introduction 
 

An asynchronous circuit design is based on a data transfer 
mechanism among neighboring modules with handshake 
protocols and their synchronizations are localized in 
corresponding modules. Therefore, the timing closure is not 
a critical design issue any more in asynchronous designs. 
This is one of attractive advantages of such a self-timed 
design over synchronous designs where power consumption 
for clock tree balance is forming a grater part of the total 
amount of power dissipation [1].  

Also, asynchronous circuits enable on-demand or event-
driven styled operations which have good energy efficiency. 
Designers do not need to use a special technique, such as a 
clock gating, that prevents clock propagation forcibly 
around a whole system.  

The asynchronous design itself does not mean a low-
power design but there are a lot of successful stories in that 
area due to its natural characteristics mentioned above [2, 3, 
4, 5]. 

Meanwhile, the market of a sensor network is rapidly 
growing and a low-power feature becomes an essential 
requirement of a sensor network research field. 
Microcontrollers in sensor nodes need an energy-efficient 
specification as well. 
The objective of this paper is to design a compatible 
version of an MSP430 processor core [6] which is widely 

employed in sensor nodes by using an asynchronous design 
method and to verify the energy-efficiency of the design. 
 

2.  Asynchronous Design 

A signaling and encoding scheme for the handshake 
protocol is based on the 4-phase bundled data assumption 
[7]. This scheme can use the same data path logics that are 
employed to synchronous designs and manage the timing of 
signals in a control path through matched delay elements to 
each sub-block in a data path. 

With the same signaling and encoding scheme, the 
MSP430 processor core has been designed by the TiDE tool 
[5] in [8]. The TiDE is easy and reliable to use because, like 
conventional CAD tools, it supports a consistent design 
flow from a high level language-based description method 
which is named HASTE to synthesized gate level verilog 
netlists. However, all designers can do is only to describe 
their asynchronous circuits using HASTE and it is 
considerably difficult to join in the rest of the design flow. 
Accordingly, how much the circuit is optimized depends on 
only description ways of HASTE and this definitely is a 
design limitation.  

To eliminate the limitation, we apply a button-up styled 
design flow, in other words, a graph-based method. 
Designers can describe behaviors of all control circuits in a 
system from the low level stage with graph model such as 
Petri net or asynchronous finite state machine (AFSM). The 
specification using such graph models can be implemented 
by specialized synthesis tools like Petrify [12] or 3D [9].  

Among several graph- based methods, we apply the design 
of the control path to AFSM based method because its 
operation is similar to synchronous FSM and synthesized 
circuit is smaller than the Peri-net based method if there is 
not many current behaviors in the system. The most of the 
control operation in the MSP430 core is serialized. 
 

3.  Architecture of Asynchronous MSP430 
Core 

The MSP430 processor core [10] has a 16-bit instruction 
set and total 7 address modes. The number of instructions is 
not large but all instructions can have all address modes. In 
addition, the number of memory access in every single 
instruction cycle varies zero to five concerning address 
modes. So the pipeline based architecture which assumes 
that utilization of data path in all instructions is fairly 
distributed is not suitable for our design. We select a CISC 
style architecture where completion time of each instruction 

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

1109



is variable according to the types of instruction and address 
modes. Figure 1 shows the abstracted block diagram of the 
asynchronous version of the MSP430 core. 
The architecture is comprised of five sub-modules and each 
sub-module has a pair of the data path and the control path. 
For convenience, sub-modules are named IFID, OF1, OF2, 
EX, and WB which means a instruction fetch and decode, a 
source operand fetch, a destination operand fetch, an 
execution, and a write back, respectively. All instructions 
do not fully pass through every module and data flow 
changes according to instruction types and address modes. 

In the control path, there are control logics which describe 
the sequences of local clocks and control signals needed in 

the data path. The control logics are based on AFSM and 
regulate the timing of the data path by using each matched 
delay element. Figure 2 shows a block diagram of the 
asyncrhonous MSP430 core. 
 

4.  Design and Simulation Result 

Each AFSM based control logic was implemented by 
directly mapping an equation from 3D logic synthesis tool 
[9] to AND-OR styled circuitry in a gate level. For 
comparison with other versions, we reused design outcomes 
of the asynchronous version with the TiDE tool and the 
synchronous version in [8]. Three versions were modeled 
with the same UMC 0.13 um libraries and their 
functionalities are verified by benchmark programs 
specialized in sensor network applications [11] in a 
simulation environment of Figure 3.  

Table 1 summarizes the performance of three versions as 
a metric of a maximum equivalent clock frequency. Note 
that an asynchronous circuit does not have a global clock so 
it is reasonable to convert its performance to a clock 

 
Figure 1. Block diagram of the asynchronous MSP430 

core 

RFI
MUX

SR

SRC

DST

PC

Register 
File

IAMUX2 IAMUX1

STRMUX DTRMUX

STR
Temp

DTR
Temp

ATR
MUX

A
MUX

D
MUX

ACC

ADDR 
Temp

Temp

IR

ALU

+

Decode 
Signals

Branch 
Offset

2

Data

Address

 
Figure 2. Datapath of MSP430 core  

Behavioral 
MSP430 
Model

 MSP430 
Netlist

(HASTE,
AFSM, 
Sync)

ROM

Memory
Model

RAM

Monitor

 
 

Figure 3. Simulation environment 

1110



frequency of synchronous one which has the same 
completion time of asynchronous one. 

The performance of the AFSM version is nearly similar to 
the synchronous version since they use the identical data 
path. Besides, both timing requirements of a global clock 
(in case of the synchronous version) and delay elements (in 
case of the AFSM version) meet a critical path delay.  

The maximum equivalent clock frequency of the TiDE 
tool version is only 40.6 % of the synchronous or the 
AFSM version. The reason is that the reflection of 
designer’s intention is restricted to only HASTE code 
generation, while a separate optimization for control paths 
and data paths can be performed at the synchronous or 
AFSM version. 

Power consumption of the three versions depending on 
variable equivalent clock frequencies is depicted in Figure 
4. As the equivalent clock frequency increases, dissipated 
power also continues to grow. Since we cannot access and 
adjust internal delay elements in the TiDE version, its 
power amount is fixed and measured to about 400 uW. 

With the same equivalent clock frequencies, consumed 
energy metrics by unit of “uW/MHz,” are described in 
Figure 5. As shown in Table 2, the AFSM version saves the 
energy consumption of the synchronous version and the 
TiDE tool version by about 31.9 % and 28.8 %, 
respectively. 

In the simulation we assume a global clock in the 
synchronous version is ideal so the power dissipation of a 

clock tree network is zero. Considering an increasing 
percentage of the power for clock distribution in P & R 
stages or real fabricated chips [1], calculated reduction ratio 
of the energy consumption between the AFSM version and 
the synchronous version can be much more improved. 
 

Conclusion 

An asynchronous MSP430 processor core was designed 
with a control path synthesis flow based on AFSM.  

Comparing with another asynchronous version using 
TiDE tool flow and a synchronous version at 0.13 um 
CMOS technology, it is concluded that the designed AFSM 
version can save the energy consumption of each version 
by about 31.9 % and 28.8 %, respectively.  

With the real environment with a fabricated chip where 
percentage of the power for clock distribution in a total 
power is increasing, calculated reduction ratio of the energy 
consumption between the AFSM version and the 
synchronous version can be much more improved. 
 
References 

[1] J. Pangjun and S. S. Sapatnekar, “Low-power clock 
distribution using multiple voltages and reduced 
swings,” IEEE Trans. VLSI Systems, Vol. 10, No. 2, pp. 
309-318, June 2002. 

[2] J. Kessels and R. Marston, “Designing asynchronous 
standby circuits for a low-power pager,” Proc. of the 
IEEE, Vol. 87, No. 2, pp 257-267, Feb. 1999. 

[3] L. S. Nielsen and J. Sparso, “Designing asynchronous 

0

2

4

6

8

10

12

14

15 25 35 45 55 65 75 85 95

Equiv. Clock Frequency (MHz)

E
n
e
rg

y 
(u

W
/M

H
z)

AFSM

Sync

HASTE

Figure 5. Energy consumption of each version 

Table 2. The minimum energy consumption of each 
version 

Version Energy (uW/MHz) 

sync 11.6 

AFSM 7.9 

HASTE 11.1 

 

0

200

400

600

800

1000

1200

15 25 35 45 55 65 75 85 95

Equiv. Clock Frequency (MHz)

P
o

w
e
r 

(u
W

)

Sync

AFSM

HASTE

 
 

Figure 4. Power consumption of each version 

Table 1. Maximum performance of each version 
Version Max. equivalent clock frequency 

(MHz) 
sync 89.2 

AFSM 89.1 

HASTE 36.2 

(sync: synchronous version,  
AFSM: AFSM version,  

HASTE: TiDE tool version) 

 

1111



circuits for low power: an IFIR filter bank for a digital 
hearing aid,” Proc. of the IEEE, Vol. 87, No. 2, pp 268-
281, Feb. 1999. 

[4] H. van Gageldonk, and et. al, “An asynchronous low-
power 80c51 microcontroller,” Proc. int. Symp. 
Advanced Research in Asynchronous Circuits and 
Systems, pp. 96-107, 1998. 

[5] http://www.handshakesolutions.com 
[6] C. Hynch and F. O’Reilly, “Processor choice for 

wireless sensor networks,” Proc. REALWSN 2005, 
2005. 

[7] S. B. Fuber and P. Day, "Four-phase micropipeline 
latch control circuits," IEEE Trans. Very Large Scale 
Integration (VLSI) Systems, Vol. 4, No. 2, pp. 247-253, 
June 1996. 

[8] D. Shang, and et. al, “Asynchronous functional 
coupling for low power sensor network processors,” 
Lecture Note in Computer Science, Vol. 4644/2007, pp. 
53-63, Aug. 2007. 

[9] K. Y. Yun, "Synthesis of Asynchronous Controllers for 
Heterogeneous Systems," Ph.D. thesis, Stanford 
University, Aug. 1994. 

[10] MSP430x1xx Family User’s Guide, Texas Instrument, 
2006. 

[11] L. Nazhandali, M. Minuth, and T. Austin, 
“SenseBench: toward an accurate evaluation of sensor 
network processor,” Proc. of the IEEE Int. Symp. 
Workload Characterization, pp. 197-203, Oct. 2005. 

[12] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. 
Lavgno, and A. Uakovelv, “PETRIFY: a tool for 
manipulating concurrent specifications and synthesis of 
asynchronous controllers,” IEICE Trans. Information 
and Systems, Vol. E80-D, No. 3, pp. 315-325, March 
1997. 

 
 

1112


