
An Efficient Hardware Allocation Algorithm for Optical Hardware
Architecture Design

Kyung-Min Eom1, Dal-Hwan Yoon2, Chi-Ho Lin3
1 3 School of Computer Science, Semyung University

2 Dept. of Electronic Engineering, Semyung University
Tel: +82-43-649-1272, Fax: +82-43-649-1770

E-mail: 1eom4544@hanmail.net, 2 yoondh@semyung.ac.kr, 3ich410@semyung.ac.kr

Abstract: This paper proposes an efficient hardware
allocation algorithm for optical hardware architecture
design.

The proposed algorithm works on scheduled input
graph and allocates binds function-al units, registers and
interconnections by considering interdependency
between operations and memory in elements in each
control step, in order to share registers and
interconnections connected to functional units, as much
as possible. Also, the register allocation is especially
executes the allocation optimal using graph coloring
techniques. Therefore the overall resource is reduced.

The effectiveness of the proposed algorithm has been
proven by the experiment with the benchmark examples.

1. Introduction

It is target purpose of CAD technology that a process
from behavioral description of designed IC chip to design
automation for chip manufacturing. The modern logic
design (from RT level circuit description to gate level
circuit design) or the layout design (form the technology
library mapped each circuit element to placement and
routing) is commonly used. But the study on the high
level synthesis that documentation feature of design flow,
according to integration and complexity of Hardware
Architecture be shorten design time, to reduce debugging
time and error of various design automation for
evaluation chip performance design of the beginning
stages, is lacking. The definition of high-level synthesis
was consisted of scheduling, allocation; binding from the
behavioral description of designed to create structure of
RT register transfer level for limiting constraints and
satisfied target function. The scheduling consist of
assigning behavioral description each operation to
control step. But it had developed algorithms solution of
the limited application field for very scheduling process
is considerable items conditional branch, pipeline, loop
and so on.[1-4]

 The allocation is assigned so that minimize area of
implement hardware, to operation as functional unit, to
variable as register, between operation and register as

interconnection assigned to bus and multiplexer. The
typical method is greedy allocation, left edge algorithm,
clique partitioning and so on. The greedy allocation
which is assigned hardware resource for executive
variable and operation each at the time interval. The
clique partitioning which is applied allocation of
operation and memory as the approach method for using
the graph theory. As the existed method of a hardware
allocation, HAL[5] system is together executes allocation
of functional unit and scheduling to suppose one each
type of functional unit, assigned allocation and binding to
register and interconnection to use clique partitioning
method. Splicer system[6] is together executed
scheduling number of function unit which fixed the states
in advance, the number of register minimized
interconnection using the method of branch and bound.
But this system cannot to obtain optimal design. Also,
REAL[7] system allocates minimum register using the
left-edge algorithm in this case not considering mutual
exclusion. But does not consider influence
interconnection, not deal with the allocation of function
unit and interconnection. The existed methods that the
first, the number and type of the register and functional
unit is fixed in advance, the second, it execute to separate
the allocation and binding. [8-9]

Consequently this paper proposes an efficient hardware
allocation algorithm for optical hardware architecture
design. The proposed algorithm works on the scheduled
input graph and simultaneously allocates and binds
registers, functional units and interconnections in stages
by considering interdependency between operations and
storage element in each control step, in order to share
registers and interconnections that are connected to
functional units, as much as possible.

The structure of this paper is introduction of the first
section, section 2 describes the proposed an efficient
hardware allocation algorithm for optical hardware
architecture design, section 3 describes experimental
result in our proposed algorithm, and finally section 4
gives conclusion.

 1

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

1093

2. The proposed an efficient hardware
 allocation algorithm

In this paper, the proposed an efficient hardware

resource allocation algorithm is shown in figure 1. The
input works on the scheduled input graph and functional
units calculated in order to allocate and bind for mobility
of all operation at preprocessing. The mobility of
operation is computed by investigating data dependency.
From the first control step allocate register, functional
unit, and interconnection in stages, after calculating
mobility of operation. At this point, providing that
allocation and binding of functional units finished, the
mobility of existing operation modify at the next control
steps. The interconnection merging executes, after
allocation and binding, as control step on the whole.

Figure 1. The overall flow of the an efficient hardware

resource allocation algorithm

2.1 The register allocation

The register allocation and binding is executed in stage
s each control step, alike the next description.
The first register classifies to allocate type. Namely, vari
able or constant, before the control step executed output o
f functional unit, classify. The second, it allocate that a re
gister, according to classify type. In this case variable, if t
he first control step, new register assign and if the next c
ontrol step, register allocate that reused before the contro
l step.

Namely, The overlapped register allocation but existing
another control step executes optimal register allocation
using graph coloring techniques. After the life-time
composed according to arrange input created graph.
When it suppose usable register number is K, if the node
don’t exist with degree(n) < k (n: node, k: usable register
number) insert node of stack in position in stead of the
spill. The coloring execute optimal coloring that node
don’t coloring after it suppose that color is able to use at

the stack when the node pop at stack, if color not useable.
The coloring algorithm shown in figure 2. In this case co
nstant, it excluded register allocation. In this case of the o
utput of functional units that was performed at the previo
us control step, investigate whether it is the input of the o
ther operation, allocation at register after considering the
types of the functional units and the type of operation rec
eiving input. If it is not the input of other operation, alloc
ation at register after considering the type of the function
operator.

Figure 2. The coloring algorithm

if(node) {
color_stack_pop(); /* Pop stack */
if(degree(n) > k) {

Non_coloring(); /* Not coloring */
Spill_code(); /* Insert spill code */

else
Coloring(); /* Coloring */

}
}

The mobility of operation

Register allocation

Functional unit allocation

Mobility modification

Allocation

Interconnection binding

If the loop exists, allocate such as Figure 3, the register

that is used at the beginning and ending of a loop. That is,
each variable V1, V2, V3 is allocated as register R1, R2,
R3 the first control step.
 At the same time they are allocated as register R1, R2,
R3 which or the same register at the last control step.

Figure 3. Register allocation for loops

2.2 The functional unit allocation

After performing of allocation and binding of register,
performance the allocation of the functional unit about ea
ch operation which is being, now, at the control step. Tha
t is, to choose the functional unit, in the cell library the f
unctional unit, which are satisfied with the computed per
formance time of each computed of operation and has the
 smallest area, investigate the five variable of self-distrib
uted number, relative distributed number, self-fixed num

 2
1094

ber, relative fixed number, and self mobility that will all
ocate or bind the functional unit. First, self-distributed nu
mber is at the control step such as operation which is goi
ng to allocate the functional units and represents the num
ber of operation which has the same type. Relative distri
buted number represents operation which is going to allo
cate the functional units and maximum number of operat
ion which is at the other control step, has the same type.
 Also, Self-fixed number is the maximum of operation o
f which mobility is zero when it is investigated the mobil
ity of operation which exist at the same control step and
has the same type, Relative fixed number is the number
of maximum of which mobility is zero per a control step
when it is investigated the mobility of operation which h
as the same type and is at the other control step with the
operation that is going to allocate functional units. Self
mobility is the mobility of operation that is going to alloc
ate functional units.

In figure 4. the self-distributed number of multiplicati
on operation which is at the first control step is one.

Figure 4. A example of self-distributed number

Figure 5. A example of relative distributed number

An example of relative distributed number shown in
figure 5. The relative distributed number, if multiplicatio
n operation which is at the first control step is determine
d as follows. The number of multiplication operation whi
ch is at the second control step is two, the number of mul
tiplication operation which is the third control step is one,
that has the maximum value, so the relatives distributed n
umber of multiplication is two. An example of self fixed
number shown in figure 6. It is possible to execute at the s
econd control step. The multiplication operation which is
at the first control step can be also performed at the contr
ol step, so the mobility is one. Therefore the self fixed nu
mber is zero.

 * +

<

 * *

Figure 6. A example of self-fixed number

2.3 A step modification the mobility

 When you allocate the functional unit for operation, in
the case of using the multi-cycling which uses many cont
rol step, the mobility arbitrate for all operation of depend
ence the operation. Plural control step is the same with th
e delay correction time on the library.
 For example, figure 7(a). is *1 allocates and binds functi
onal units for using multiple control step, self distributed
number 1 and self mobility 2, self fixed number, relative
distributed number, relative fix number, all 0. There by t
he +2 of input received output of *1 is mobility converse
d from 1 to 0. The result of allocation and binding shown
in figure 7(b).

*

+

<

(a) (b)

* +

* + *

Figure 7. A example of modification the mobility < * (a) Before the modification of mobility
 (b) After the modification of mobility

2.4 The binding of interconnection

 Perform the allocation of interconnection after performi
ng the allocation of functional units. In this case first con
trol step, allocate new multiplexer for each operation. Se
cond, from control step, investigate the types of function
al units and input, and then find out the same type as muc
h as possible finally allocate the multiplexer. Third, inves
tigate the input number of multiplexer. If, there is one, o
mit multiplexer, or not investigate the control step of eac
h multiplexer. If the input value is the same, it will be me
rged even through the control step is duplicated or not. A
t this time, the multiplexer which has been merged stand f
ace to face with bus. As an example, seeing the figure 6,

 3
1095

we can find out that *5 which is at the second control ste
p and *2 which is at the first control step have been alloc
ate and bind for the same functional unit (FU2). Therefor
e, the interconnection of *5 can allocate and bind as the s
ame interconnection of *2.

3. The result of experiments

 This paper executed allocation algorithm result is comp
ared by HAL[5] result, for exactly comparison, using HA
L, Splicer[6] application extraction result is received inp
ut. The HAL, Splicer, REAL[7] comparative result of ar
ea cost of the fifth elliptic wave filter to adopt as the stan
dard benchmark model for High-Level synthesis Worksh
op as benchmark model shown in Table 1. The HAL
system is the piped functional units area cost was reduced
11.1%, Also register area cost was reduced 9.3% , conse
quently total area cost is reduced. The Splicer and REAL
system is the same cost ratio register like the differential
equation. The total area cost reduced 5.8%.

Table 1. The benchmark experiment result for fifth -orde
r elliptic wave filter

The Fifith-Order elliptic wave filter

0

20

40

60

80

100

120

140

160

180

200

HAL Splicer REAL Ours

System

C
os

t

Piped Fus

Registers

Interconnection

Total Area Cost

4. Conclusion

 This paper have showed a new algorithm that perform a

hardware resource allocation and binding for optical
hardware architecture. A hardware resource allocation
algorithm performed with the characters as follows. First,
from control step, allocate registers and functional units
by stages and then perform interconnection merge after
performing interconnection binding.
Finally, the hardware cost functional unit values was

shows effectiveness, which minimum for the ultimate
purpose of high-level synthesis techniques. Also, after
this study project will precede the study for the
anticipation and estimation which based on a
simultaneous hardware resource allocation and binding
algorithm for optical SOC design.

 Reference

[1] Breuer, M. A., Digital System Design Automation,

Computer Science Press, Inc. 1975.
[2] Rubin, S. M., Computer Aided for HARDWARE

ARCHITECTURE Design, Addison_Wesley.
[3] Shiva, S. G., Jan., “Automatic Hardware Synthesis,”

Proceedings of the IEEE, Vol. 71(1), p.76-87, 1983.
[4] Gajski, Daniel D., 1988, Silicon Compilation,

Addison-Wesley
[5] Brayton, R. K. Sangiovanni-Vincentelli, A. L. and G.

D. hatchtel, “Multi-level Logic Synthesis,”
Proceedings of the IEEE, Vol.78(2), p.264-300. Feb.
1990.

[6] Kuh, E. S. and Ohtuski, T., “Recent Advance in
HARDWARE ARCHITECTURE Layout,”
Proceedings of the IEEE, Vol. 78(2), Feb 1990.

[7] McFarland, M. C., Paker,A. C. and Camposano, R.,
“The High-Level Synthesis of the Digital System,”
Proceedings of the IEEE, Vol. 78(2), p.301-318, Feb.
1990.

[8] Hitchcock, C. Y., and D. E. Thomas, “A Method for
Automatic DataPath synthesis,” Proc. of the 20th
Design Automatic Conference(DAC), p.484-489.
1983.

[9] Camposano, R., “From Behavior to Structure:
High-Level Synthesis,” IEEE Design & Test of
Computer”, p.8-19, Oct. 1990.

[10] Daniel D. Gajski, Nikil D. Dutt, and Allen C-H Wu,
“High -Level Synthesis: introduction to chip and
system design,” p.272 -283, 1992.

 4
1096

