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Abstract:    Apache Spark is an open-source framework 

for scalable big data processing. OpenStack is a popular 

virtualization framework that provides Infrastructure as a 

Service (IaaS) on cloud. Deploying Spark on OpenStack 

provides many benefits such as on-demand resource scaling, 

greater availability and flexibility. However, this 

virtualized Spark is likely to have very different 

performance characteristics from the native Spark. This 

paper aims to quantize the cost of virtualization on a Spark 

cluster. Our experiments dem-onstrate that (i) the 

virtualized Spark with four nodes is about 1.58X slower 

than the native Spark, (ii) all of network, CPU and GC 

cause this slowdown. Overall, the network waiting time 

and CPU time contribute the most to the increased 

execution time, and the GC time has the highest increasing 

rate. 

 Keywords-- Apache Spark, OpenStack, Virtualization 
 

1.  Introduction 

Apache Spark [1] is one of the most popular large-scale 

data processing engines today. It is an open-source project 

firstly developed by UC Berkeley AMP Lab. Spark can 

achieve much higher performance than Hadoop MapRe-

duce [2] (10X faster on disk, 100X faster in memories) by 

placing data inside memory. Spark uses Resilient Distri-

buted Datasets (RDDs) [3], which allows programmer 

cache the intermediate data in memory rather than writing 

them back to disk. 

 OpenStack [4] is an open-source platform for Infrastruc-

ture as a Service (IaaS) on cloud. OpenStack can help en-

terprises build their own private and public clouds, in a 

similar way to Amazon EC2 and S3. 

 As Spark is becoming more widely adopted, there are 

growing interests in deploying it on OpenStack. Many en-

terprises try deploying Spark on OpenStack provides many 

benefits such as on-demand resource scaling, greater avail-

ability and flexibility. However, this virtualized Spark is 

likely to have very different performance characteristics 

from the native Spark. 

 This paper aims to quantize the cost of virtualization on 

a Spark cluster. By running 6 workloads from Intel Hi-

Bench [5] on both virtualized and native Spark clusters of 

the same configuration, we first measure how much their 

performance differs. Besides, using a trace analysis tool, we 

identify the reasons for this difference. Our analysis shows 

that all of network, CPU and GC are attributed to the per-

formance difference between the two clusters. 

 

2.  Experimental Setup 

Cluster Setup: We employ a 4-node homogeneous cluster 

for our experiments. Each node has an Intel®  i7-4790 CPU, 

which has 4 cores with 8 threads running at 4 GHz, 2 TB 

HDD, and 32 GB of physical memory. The OS is 64-bit 

Ubuntu 14.04 LTS. Nodes are connected by a 10 Gbps 

Ethernet switch. 

 We deploy the Liberty version of OpenStack [4]. In 

addition to the 4 compute nodes, a separate controller node 

is set up. We use the provider networks option for the 

OpenStack networking service, which means all instances 

attached directly to the public network. 

 We use Spark version 1.5.1 [1] running in standalone 

mode on HDFS 1.2.1 [2].  As shown in Figure 1, we deploy 

Spark cluster on 4 nodes. For the virtual Spark cluster, we 

deploy a Spark cluster on the four OpenStack compute 

nodes with one OpenStack VM instance per node. Each 

VM has 7 vCPU cores, 500 GB disk, and 31 GB memory. 

Each Spark executor has 30 GB memory and 6 threads, 

which means it can run 6 tasks in parallel. 

Workloads: We run 6 workloads from Intel HiBench [5] 

on both clusters as summarized in Table 1: WordCount, 

TeraSort, Scan, Join, PageRank, and Bayesian Classifica-

tion (Bayes). HiBench is a popular big data benchmark 

suite. We set the data scaled to huge size. 

 WordCount and TeraSort are job based micro bench-

marks. TeraSort has a higher shuffle overhead to produce 

more network and disk I/O requests than WordCount, 

which just summarizes a large data set. Scan and Join are 

SQL benchmarks, where Join contains Hive queries. Page-

Rank is an iterative web search benchmark. Bayes is a ma-

 

Figure 1. Cluster Configuration 

Table 1. Workloads Characterization 

Type Workloads Input Data Size 

Job based 
WordCount 31.96 GB 

TeraSort 32 GB 

SQL 
Scan 1.82 GB 

Join 1.97 GB 

Web Search PageRank 2.99 GB 

Machine Learning Bayes 1.82 GB 
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chine learning benchmark. Both PageRank and Bayes build 

on Spark-MLlib. 

 

3.  Results 

Figure 2 compares the performance of physical and virtual 

Spark clusters. We take an average of 10 measurements for 

each workload. The Y-axis represents normalized execution 

time. We use a bar chart with an error bar to depict the 

maximum and minimum values. 

 As shown in Figure 2, Spark in the virtual environment 

is about 1.58X slower than on the physical cluster. Virtual 

Spark cluster exhibits performance degradation for Bayes, 

Join, Scan, TeraSort and WordCount, with increases in ex-

ecution time of 1.07X, 1.05X, 1.06X, 2.01X, and 2.75X, 

respectively. Moreover, PageRank fails to run with Spark 

due to a timeout error on the virtual Spark cluster. This 

problem is caused by running out of memory space [6]. 

 For performance profiling, we use a trace analysis tool 

[7], which can help us to understand the breakdown of ex-

ecution time, and we use it to analyze how a virtual envi-

ronment affects the performance of Spark. We first set the 

parameter spark.eventLog.enabled to true [1], 

which can enable the Spark master to write an event log 

with information about each completed task to a file. 

 Our analysis shows that network, CPU and memory are 

all bottlenecks in the virtual environment. Furthermore, the 

increasing rate of GC time is significant. We take TeraSort 

as an example in Figure 3 (a) and (b). The X-axis represents 

execution time and the Y-axis represents different tasks in a 

Spark job. One thing to note here is that the scales of X-axis 

in Figure 3 (a) and (b) are different. We choose task 480 to 

492, which dominates the execution time in the job. We 

have found that the network waiting time and computation 

time in the virtualized cluster is about 2 times as much as 

that of the native cluster, and GC takes almost 3-4 times 

longer. Therefore, network waiting time and computation 

time have the most significant impact on the performance 

and the GC time has the highest increasing rate. 

 

4.  Submission Process 

First, we plan to find a way to summarize the overall execu-

tion time for each execution segment. The performance 

profiling tool we use can only show how much time a task 

spends. We need not only the visualization but also more 

precise numbers to quantify the performance. 

 Second, we intend to scale out our cluster from 4 nodes 

to 8 nodes and test on larger scale data sets.  Moreover, we 

plan to change from standalone mode to Yarn mode [2] for 

easier resource management and performance tuning. 

 Finally, we plan to use profiling tools for OpenStack. In 

this paper, we only use the profiling tool for Spark on both 

virtual and physical clusters to find several bottlenecks. As 

a next step we need more detailed analysis to figure out the 

sources of inefficiency and find ways to eliminate them to 

reduce the performance gap. 
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Figure 2. Execution Time 
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Figure 3. Performance Profiling 
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