
Spark vs. Virtualized Spark: A Performance Analysis

Wenjing Jin1 and Jae W. Lee2
1
 Department of Electrical and Computer Engineering, Sungkyunkwan University

2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
2
 Department of Semiconductor Systems Engineering, Sungkyunkwan University

2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea

E-mail: {wenjing90, jaewlee}@skku.edu

Abstract: Apache Spark is an open-source framework

for scalable big data processing. OpenStack is a popular

virtualization framework that provides Infrastructure as a

Service (IaaS) on cloud. Deploying Spark on OpenStack

provides many benefits such as on-demand resource scaling,

greater availability and flexibility. However, this

virtualized Spark is likely to have very different

performance characteristics from the native Spark. This

paper aims to quantize the cost of virtualization on a Spark

cluster. Our experiments dem-onstrate that (i) the

virtualized Spark with four nodes is about 1.58X slower

than the native Spark, (ii) all of network, CPU and GC

cause this slowdown. Overall, the network waiting time

and CPU time contribute the most to the increased

execution time, and the GC time has the highest increasing

rate.

 Keywords-- Apache Spark, OpenStack, Virtualization

1. Introduction

Apache Spark [1] is one of the most popular large-scale

data processing engines today. It is an open-source project

firstly developed by UC Berkeley AMP Lab. Spark can

achieve much higher performance than Hadoop MapRe-

duce [2] (10X faster on disk, 100X faster in memories) by

placing data inside memory. Spark uses Resilient Distri-

buted Datasets (RDDs) [3], which allows programmer

cache the intermediate data in memory rather than writing

them back to disk.

 OpenStack [4] is an open-source platform for Infrastruc-

ture as a Service (IaaS) on cloud. OpenStack can help en-

terprises build their own private and public clouds, in a

similar way to Amazon EC2 and S3.

 As Spark is becoming more widely adopted, there are

growing interests in deploying it on OpenStack. Many en-

terprises try deploying Spark on OpenStack provides many

benefits such as on-demand resource scaling, greater avail-

ability and flexibility. However, this virtualized Spark is

likely to have very different performance characteristics

from the native Spark.

 This paper aims to quantize the cost of virtualization on

a Spark cluster. By running 6 workloads from Intel Hi-

Bench [5] on both virtualized and native Spark clusters of

the same configuration, we first measure how much their

performance differs. Besides, using a trace analysis tool, we

identify the reasons for this difference. Our analysis shows

that all of network, CPU and GC are attributed to the per-

formance difference between the two clusters.

2. Experimental Setup

Cluster Setup: We employ a 4-node homogeneous cluster

for our experiments. Each node has an Intel® i7-4790 CPU,

which has 4 cores with 8 threads running at 4 GHz, 2 TB

HDD, and 32 GB of physical memory. The OS is 64-bit

Ubuntu 14.04 LTS. Nodes are connected by a 10 Gbps

Ethernet switch.

 We deploy the Liberty version of OpenStack [4]. In

addition to the 4 compute nodes, a separate controller node

is set up. We use the provider networks option for the

OpenStack networking service, which means all instances

attached directly to the public network.

 We use Spark version 1.5.1 [1] running in standalone

mode on HDFS 1.2.1 [2]. As shown in Figure 1, we deploy

Spark cluster on 4 nodes. For the virtual Spark cluster, we

deploy a Spark cluster on the four OpenStack compute

nodes with one OpenStack VM instance per node. Each

VM has 7 vCPU cores, 500 GB disk, and 31 GB memory.

Each Spark executor has 30 GB memory and 6 threads,

which means it can run 6 tasks in parallel.

Workloads: We run 6 workloads from Intel HiBench [5]

on both clusters as summarized in Table 1: WordCount,

TeraSort, Scan, Join, PageRank, and Bayesian Classifica-

tion (Bayes). HiBench is a popular big data benchmark

suite. We set the data scaled to huge size.

 WordCount and TeraSort are job based micro bench-

marks. TeraSort has a higher shuffle overhead to produce

more network and disk I/O requests than WordCount,

which just summarizes a large data set. Scan and Join are

SQL benchmarks, where Join contains Hive queries. Page-

Rank is an iterative web search benchmark. Bayes is a ma-

Figure 1. Cluster Configuration

Table 1. Workloads Characterization

Type Workloads Input Data Size

Job based
WordCount 31.96 GB

TeraSort 32 GB

SQL
Scan 1.82 GB

Join 1.97 GB

Web Search PageRank 2.99 GB

Machine Learning Bayes 1.82 GB

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

1019

chine learning benchmark. Both PageRank and Bayes build

on Spark-MLlib.

3. Results

Figure 2 compares the performance of physical and virtual

Spark clusters. We take an average of 10 measurements for

each workload. The Y-axis represents normalized execution

time. We use a bar chart with an error bar to depict the

maximum and minimum values.

 As shown in Figure 2, Spark in the virtual environment

is about 1.58X slower than on the physical cluster. Virtual

Spark cluster exhibits performance degradation for Bayes,

Join, Scan, TeraSort and WordCount, with increases in ex-

ecution time of 1.07X, 1.05X, 1.06X, 2.01X, and 2.75X,

respectively. Moreover, PageRank fails to run with Spark

due to a timeout error on the virtual Spark cluster. This

problem is caused by running out of memory space [6].

 For performance profiling, we use a trace analysis tool

[7], which can help us to understand the breakdown of ex-

ecution time, and we use it to analyze how a virtual envi-

ronment affects the performance of Spark. We first set the

parameter spark.eventLog.enabled to true [1],

which can enable the Spark master to write an event log

with information about each completed task to a file.

 Our analysis shows that network, CPU and memory are

all bottlenecks in the virtual environment. Furthermore, the

increasing rate of GC time is significant. We take TeraSort

as an example in Figure 3 (a) and (b). The X-axis represents

execution time and the Y-axis represents different tasks in a

Spark job. One thing to note here is that the scales of X-axis

in Figure 3 (a) and (b) are different. We choose task 480 to

492, which dominates the execution time in the job. We

have found that the network waiting time and computation

time in the virtualized cluster is about 2 times as much as

that of the native cluster, and GC takes almost 3-4 times

longer. Therefore, network waiting time and computation

time have the most significant impact on the performance

and the GC time has the highest increasing rate.

4. Submission Process

First, we plan to find a way to summarize the overall execu-

tion time for each execution segment. The performance

profiling tool we use can only show how much time a task

spends. We need not only the visualization but also more

precise numbers to quantify the performance.

 Second, we intend to scale out our cluster from 4 nodes

to 8 nodes and test on larger scale data sets. Moreover, we

plan to change from standalone mode to Yarn mode [2] for

easier resource management and performance tuning.

 Finally, we plan to use profiling tools for OpenStack. In

this paper, we only use the profiling tool for Spark on both

virtual and physical clusters to find several bottlenecks. As

a next step we need more detailed analysis to figure out the

sources of inefficiency and find ways to eliminate them to

reduce the performance gap.

References

[1] Apache Spark. https://spark.apache.org/.

[2] Apache Hadoop. https://hadoop.apache.org/.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

McCauley, M. J. Franklin, S. Shenker, I. Stoica,

"Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for In-Memory Cluster Computing", in

Proceedings of 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2012.

[4] OpenStack. https://www.openstack.org/.

[5] HiBench. https://github.com/intel-hadoop/HiBench.git

[6] I. S. Choi, W. Yang, Y. Kee, "Early Experience with

Optimizing I/O Performance Using High-Performance

SSDs for In-Memory Cluster Computing", in Proceedings

of IEEE International Conference on Big Data (Big Data),

2015.

[7] K. Ousterhout. Trace analysis tool.

 https://github.com/kayousterhout/trace-analysis.git

Figure 2. Execution Time

(a)

(b)

Figure 3. Performance Profiling

1020

