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1. Introduction
Subspace methods have been widely used in various wire-
less communication applications such as space-time antenna
array signal processing, system identification and channel
estimation [1], [2]. It is well known that the subspace
method is focusing on decomposing the orthogonal signal
and noise subspace by block-wise processing over empiri-
cal covariance matrix, with which performance suffers from
non-stationarity in environment due to short measurement
period of fast-moving targets, such as air-crafts, trains, and
cars. Moreover, due to the fact that the empirical covariance
matrix calculated from the received signals for eigenvalue de-
composition (EVD) must be non-singular, the decorrelation
of coherent signals is a fundamental task in non-stationary
environments.

The conventional spatial smoothing technique is used
in decorrelation. The array elements are divided into several
sub-arrays and calculate the spatially smoothed empirical co-
variance by taking average of covariance over all sub-arrays
in spatial domain. The decorrelation performance is relying
on the large size of array elements. However, in practical,
temporal smoothing by taking average in time domain is fre-
quently used to replace with the spatial smoothing because
of the difficulty of managing large size antenna in low fre-
quency band. The performance of temporal smoothing is
depending on the large number of snapshots which is hard to
achieve with fast moving targets in terms of short measure-
ment duration. Therefore, to overcome such problems, a 2D
smoothing by utilizing vectorization operation to combine
parameters both in spatial and time domains is introduced in
this paper.

2. Proposals

Consider the uniform linear array (ULA) consisting of 𝑀

elements is managed to receive 𝐿 narrow band signals from
direction {\0, \1, · · · , \𝐿−1} sent from the moving target dur-
ing 𝑛△𝑡 (𝑛 = 0, 1, . . . , 𝑁 − 1, △𝑡 is sampling interval) mea-
surement period. In 2D smoothing, all snapshots are divided
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into several sub-rectangles in spatial and time domains, as
shown in Fig.1. The 2D smoothed signal model in vector
notation is given by:

r = A(𝜽 , f𝑑)𝜶 + n, (1)

where A(𝜽 , f𝑑) is combined steering vector by vectoriza-
tion operation (the column-wise Kronecker matrix product
A(𝜽)

⊗
A(f𝑑)), related to the direction-of-arrival (DOA)

of incoming waves and Doppler frequency shift due to the
motion of the target, respectively, 𝜶 is the vector including
amplitude, initial phase components, shift matrix of DOA
and Doppler parameters and n is the Gaussian noise. Note
that the 2D smoothing procedure in Fig.1 is in relative to
uniform rectangular array (URA). The 2D smoothed covari-
ance matrix is calculated by taking average of all covariance
in each sub-rectangle.
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3. Conclusion
The eigenvalue ratio is defined by the fraction between the
smallest eigenvalue and largest eigenvalue in signal subspace
for evaluating the performance of decorrelation, as in Fig. 2.
Compared with the conventional spatial or temporal smooth-
ing technique, the proposed 2D smoothing is more flexible
to adjust the size of antenna array and measurement period.
Even in non-stationary environments, the coherent signals
can be decorrelated so that the system robustness is further
improved.
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