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SUMMARY For next-generation logistics systems using autonomous 

vehicles and drones, spoofing of the GNSS location data will induce serious 

problems. Although signal-based anti-spoofing has been studied, it is 

difficult to apply to current commercial GNSS modules in many cases. We 

investigate possibilities to detect spoofing of GNSS location data using 

multiple sensing devices and a decision tree classifier. Multiple features 

using the GNSS, beacons, and the IMU are defined and create a model to 

detect spoofing. Experimental results using a learning-based classifier 

indicate higher performances and generalization capability. The results also 

show that distance from beacons is useful for detecting GNSS spoofing and 

indicate prospects of installation for future drone highways.  
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1. Introduction 

Location information captured by Global Navigation 

Satellite Systems (GNSS) is important for next-generation 

logistics systems using autonomous vehicles and drones. 

GNSS is susceptible to interference from jamming and 

spoofing due to its open signal structure and low signal 

power. As a result, the safety and integrity of GNSS are 

threatened. Recently, actual cases of spoofing have been 

reported [1] and countermeasures are being considered. 

 Most of the spoofing detection methods reported so far 

are based on signal-level analysis [2][3]. Spoofing detection 

by signal level analysis requires special circuitry and cannot 

take advantage of the low-cost GNSS modules that are 

currently available to the embedded devices. Another 

approach is to detect GNSS spoofing by integrating multiple 

sensing devices, including Inertial Measurement Units 

(IMU) and Inertial Navigation Systems (INS) [4][5]. 

However, in practice, the available devices and methods 

differ depending on the environment. The generalization of 

integration of multiple sensing devices is a challenge. 

 We will investigate methods to detect GNSS spoofing 

using multiple low-cost devices and aim to generalize the 

method using a machine learning approach. 

2. Problem Statement 

2.1 Spoofing GNSS Signals 

From banks to smart power grids, data centers, logistics 

giants, high-frequency trading firms, 5G, and digital 

television broadcasting, several industries critically rely on 

global navigation satellite systems, GNSS, for precise 

synchronization of time and position. Sadly, due to the low 

power level of satellite signals, GNSS receivers are highly 

susceptible to RF interference. Closely located powerful 

transmitters like digital television or cellular base stations 

can easily degrade the quality of GNSS signals, which can 

be critical for time-sensitive applications like 5G. Widely 

distributed low-cost jammers easily block GNSS signals 

hundreds of meters away. But it is nothing compared to the 

threat posed by GNSS spoofing.  

 GNSS signal spoofing can be easily performed with 

low-price software-defined radios in the market [6][7]. An 

example is shown in Fig. 1. When a drone is following its 

GNSS location-based route and the received GNSS spoofing 

signal strength is stronger than the real GNSS signal. The 

drone will pick the stronger signal by default and let the 

spoofing data affect its navigation system. The drone then 

may be navigated towards incorrect locations by false GNSS 

data and falls into the wrong hands. 

 

 
Fig. 1 Spoofing GNSS signals. 

2.2 Detection of GNSS Spoofing using Multiple Sensing 

Devices 

In order to maintain correct GNSS information 

continuously, an important question is how to detect 

spoofing data. In modern IoT devices, manufacturers 

usually ship their chips with several sensors and 

communication modules all-in-one style. We can usually 

find not only GPS modules but also Bluetooth modules 

and IMUs, including accelerometers and barometers. 

These sensors and modules can provide valuable data that 

potentially confirms the device’s current movement status 

and further validate GNSS status. Fig. 2 shows an 

example of using a Bluetooth module for its received 

beacon signals. The beacon’s GNSS data can be 

referenced to validate the drone’s GNSS data. 
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Fig. 2 Detection of GNSS spoofing using multiple sensing devices. 

3. Methods 

3.1 Experimental System and Data Acquisition 

To verify our proposal, an experimental system is 

designed to detect simulated GNSS spoofing data. 

The experimental system is made with several parts, 

a hand-held compact computer powered by a battery, a 

GNSS module, and several Bluetooth beacons.  

As shown in Fig. 3, the hand-held computer is based 

on the Raspberry-Pi model 4B. An accelerometer and 

barometer embedded sensor-hat is attached to the 

Raspberry-Pi to provide sensor data for GNSS spoofing 

detection, and a touch-screen display is connected to the 

Pi to provide real-time data feedback. The GNSS module 

is connected via USB to provide GNSS data while in the 

field. 

 

 
Fig. 3 Experimental system. 

 

A total of five Bluetooth beacons are used in the 

experiment. The embedded Bluetooth module in the Pi 

can scan and find the closest beacon and use the beacon’s 

preset location data to detect GNSS spoofing data. 

Table 1 shows the acquisition data in the experiment. 

The GNSS data records the latitude, longitude, and 

altitude values during the experiment. The Bluetooth 

receiver scans and collects the Bluetooth beacon in range 

and records the beacon ID and its RSSI value. The beacon 

ID points to a table that holds the other beacons’ GNSS 

data, which is preset in the initial process of the 

experiment. The RSSI value helps to choose the closest 

beacon to reference its GNSS data. The onboard 

accelerometer records the real-time acceleration values in 

the three axes to verify if the device has moved by GNSS 

data. The barometer records barometric pressure values 

that also will help verify GNSS data. The data acquisition 

cycle is one second. 

Table 1 Acquisition data 

Device values Remarks 

GNSS latitude  

longitude  

altitude  

Bluetooth 

Receiver 

beacon ID The nearest beacon is selected, 
its location data is obtained RSSI 

IMU acceleration X  

acceleration Y  

acceleration Z  

Barometer barometric pressure  

  

 

 
Fig. 4 Acquisition of location data. 

 

The GNSS data is collected in the field of Waseda 

University. In the experiment, we hand-held the battery-

powered computer and moved in different patterns to 

emulate drone movement. Each movement pattern 

provides a set of acquisition data. Fig.4 shows collection 

samples consisting of GNSS location data (red dots) and 

the positions of Bluetooth beacons (blue dots). As shown 

in Fig. 4, there are six sets of data categorized into (a)~(f). 

In data (a) and (b), movement data is in circles and in (c) 

and (d), it’s in straight lines. In (f), it represents random 

movement. With the collected GNSS data in the field, we 

can simulate spoofing data by adding malice data in 

different styles and using acquisition data to detect 

spoofing data. 
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3.2 Simulation of GNSS Spoofing  

There are many methods of spoofing, ranging from simple 

to complex implementations [2]. In this study, we first 

assume that spoofing is an event that replaces false location 

information in the target area. As shown in Fig. 5, a 5 x 3 

radio emission points array is set in our simulation. The 

distance between the emission points is approximately 5 m, 

and one of the launch points is activated. In the area centered 

on the launch point, the GNSS information is replaced by 

spoofing data. The radius r is set to 10 m in this study. 

The spoofing data is designed to maintain continuous 

movement changing in 9 directions. Latitude and longitude 

change by 0.000005 degrees per second, which is close to 

the actual walking movement. Small random perturbations 

are also added to avoid unnatural movements. 

 

 
Fig. 5 Areas for spoofing GNSS signals. 

By changing emission points and moving directions, 

the simulation transforms a single acquired walking 

trajectory into 135 trajectories that include spoofing data. As 

shown in Fig. 6, two different offsets are set to spoof latitude 

and longitude. Fig. 6(a) and (b) show the cases of offset = 0 

(spoof A) and offset = 25 m (spoof B), respectively. The red 

dots indicate GNSS positions, and the green circle is the area 

to be spoofed. The spoofed position data are indicated by 

orange dots with different amounts of shift. 

 

 
(a) spoof  A              (b) spoof  B  

Fig. 6 Spoofing GNSS data (red dots: GNSS, green area: spoofing area, 

orange dots: spoofed location) 

3.3 Detection of Spoofing 

We analyze the properties of features in spoofing data by 

using a decision tree classifier [8]. Also, the decision tree 

classifier can be applied to detect spoofing in Section 4.2. 

In the first step, features for classification are defined so 

that they are not related to the absolute location. The 

distance from the previous position, the distance from the 

nearest beacon, and acceleration values are selected as 

features (see Table 2). The two types of distances from the 

previous position are calculated from latitude and longitude 

at different time intervals. In this experiment, altitude and 

barometric pressure are ignored as feature values because 

the acquired data does not involve enough altitude changes.  

The distance from the beacon is obtained by selecting the 

nearest neighbor beacon, as explained in Section 3.1.  

Table 2 Features for spoofing detection 

Features Label 

Distance from previous position (1sec) dist 

Distance from previous position (2sec) dist2 

Distance from the nearest beacon distBle 

Acceleration X accX 

Acceleration Y accY 

Acceleration Z accZ 

Difference of Acceleration (1sec) diffAcc 

4. Results and Discussion 

4.1 Properties of the Trained Decision Tree 

We use the first half of data No.1 to create a model of the 

decision tree classifier. The training dataset consists of 67 

sequences containing 18827 data. The maximum depth of 

the tree is set as five to create the model. 

 
Fig. 7 Importance of features 

 
Fig. 8 Decision tree to detect “spoof B” (blue squares means the 

decision points of spoofing) 
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The importance values (the Gini importance) for 

features are shown in Fig. 7. If the model is trained using 

data “spoof B”，  the distance from the nearest beacon 

(distBle) becomes a higher importance. On the other hand, 

if the model is trained with “spoof A”, the importance of 

distBle becomes lower as same as other features such as 

accX and accZ. This property is reasonable because “spoof 

B,” which includes spoofed locations far from genuine 

locations, tends to be far from the nearest beacon as well. 

Fig. 8 shows the structure of the decision tree trained using 

“spoof B”. 

The contribution of dist is small in the results of “spoof 

A” and “spoof B”. It is considered that amounts of dist are 

very small because the device moved slowly by walking. 

This feature should be revised in actual drone flight. 

4.2 Performances of Spoof Detection 

The six types of acquired data shown in Fig. 4 are evaluated 

with the trained decision trees created in Section 4.1. For the 

evaluation of dataset No.1, we utilized the second half of the 

data, which was not used for training. To obtain higher recall, 

the parameter of the prediction probability is changed from 

the default value of 0.5 to 0.95. Table 3 shows precision and 

recall of detecting spoofing for two kinds of spoofing 

patterns. In the result of “spoof B”, the average of recall 

becomes higher at 0.986, and the average of precision is 

0.704. 

According to the results in Table 3, the model trained 

by using the first half of No.1 maintains higher performance 

for other samples. It is considered that the designed features 

and the trained classifier have generalization capability for 

variations in the data. As we pointed out, the generalization 

of integration of multiple sensing devices is a challenge. As 

a first step, we use a classic decision tree approach and find 

that learning classifiers can be one of the solutions for multi-

device integration to detect spoofing.  

Table 3 Performances of spoofing detection 

sample 

No. 

data 

volume 

spoof A(close) spoof B (far) 

precision recall F1 precision recall F1 

1 19108 0.651  0.936  0.768 0.683  0.988  0.801 

2 8505 0.945  0.902  0.923 0.789  0.986  0.877 

3 4995 0.930  0.912  0.920 0.959  0.988  0.974 

4 11070 0.865  0.898  0.881 0.775  0.988  0.868 

5 8910 0.339  0.821  0.480 0.315  0.978  0.477 

6 24705 0.769  0.906  0.832 0.702  0.987  0.821 

 average 0.750  0.896  0.800 0.704  0.986  0.803 

 

The simulation results explain that distance from the 

nearest beacon is used to detect spoofing with large offsets. 

According to this result, the installation of beacons on the 

highways [9] is one of the effective approaches to prevent 

spoofing and provide trusted location information. 

Although there are many studies for signal-level 

spoofing detection [2][3], these approaches demand 

additional circuits and cannot be applied to current 

commercial GNSS devices. It is considered that our 

approach is practical to prevent spoofing by using 

commercial GNSS devices. It is considered that our 

approach can be one of the realistic solutions to reduce the 

threat of spoofing in current systems. 

5. Conclusion 

In this paper, we investigated possibilities to detect spoofing 

of commercial GNSS devices using multiple sensing 

devices and a decision tree classifier. Multiple features from 

the GNSS, beacons and the IMU are defined and a learning-

based model to detect spoofing is created. The learning-

based classifier indicates adequate performance and 

generalization capability. The results also explain that the 

distance from the nearest beacon is useful for detecting 

GNSS spoofing and indicate possibilities of installation for 

future drone highways. We will continue to study further 

improvements, including other state-of-the-art machine 

learning approaches. 
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