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SUMMARY In an indoor environment, it is difficult to receive radio waves 
directly from satellites which hinders accurate location estimation by 
satellite signals. Meanwhile, mobile communication propagation channels 
suffer from fading and shadowing, so estimation of indoor locations by 
using only the received signal power of a radio wave is inaccurate as well. 
Sensed information (e.g., temperature, humidity, illuminance) is often 
location dependent, and a location can be estimated accurately if such 
information is used in addition to the received signal power. The use of 
machine learning for an optimization algorithm has been shown to be 
promising. In this paper, we apply machine learning for indoor location 
estimation at various altitudes using multiple items of sensed information. 
We propose two types of neural networks, a two-dimensional neural 
network and a nearest node neural network, and experimentally evaluate 
them in an actual building. The results indicate that location estimation 
using the nearest node neural network has a greater coincidence probability 
than that using the two-dimensional neural network. 
keywords: location estimation, machine learning, ZigBee, sensed 
information, IoT. 

1. Introduction 

The demand for accurate location estimation has been 
increasing as applications that use location information 
become more commonplace [1], [2]. Receiving radio waves 
directly from satellites is difficult in an indoor environment, 
which hinders location estimation using satellites signals 
(e.g., GPS [3]). Because mobile communication propagation 
channels suffer from fading and shadowing, the estimation 
of indoor locations [4]–[6] by using only the received signal 
power of a radio wave tends to be inaccurate.  
 Advancements in IoT technology have made it possible 
to collect sensed information (e.g., temperature, humidity, 
and illuminance) on a widespread basis. Sensed information 
is often location dependent, and a location can be accurately 
estimated if such information is used in addition to the 
received signal power. 
 The use of machine learning [7]–[9] for an optimization 
algorithm has been shown to be promising. We previously 
proposed applying machine learning for indoor location 
estimation using multiple items of sensed information and 
showed that the machine learning method achieves a higher 
coincidence probability and a smaller standard deviation of 
error than that of the MMSE method [10][11]. 
 The demand for accurate location estimation is 
increasing not only for same altitude areas but also various 
altitudes ones (e.g., buildings). As the number of different 
altitudes increases, utilizing the machine learning method 

becomes more complicated. At various altitudes in an indoor 
environment, e.g., different floors of a building, altitude and 
distance can be estimated by machine learning in the same 
manner as in [10][11]. Because there are many sensor nodes 
at known locations, it is also possible to estimate the nearest 
sensor node [4][12]. In this paper, we study the effect of 
neural network structure on location estimation at various 
altitudes in an indoor environment. We propose two 
different structures, a two-dimensional neural network and a 
nearest node neural network, and experimentally evaluate 
them in an actual building. 

2. Machine Learning Location Estimation Method  

A neural network is a network constructed by combining 
many artificial neurons called “cells.” A cell subtracts a bias 
value from the sum of the weighted input signals and outputs 
the difference via an output function. In our study, the 
location is estimated from corridors at various altitudes 
(floors) in a building. Thus, we consider a two-dimensional 
output layer. The proposed neural network with two output 
layers is shown in Figure 1, where I is the number of input 
signals, and M is the number of cells of an intermediate layer. 
This neural network structure can also output a distance 
where no sensor nodes are placed as estimated values. 
 If there are many sensor nodes whose locations are 
known, the nearest sensor nodes can be found by comparing 
the sensed information obtained by those sensor nodes and 
the moving sensor node. Figure 2 shows the proposed 
nearest node neural network which outputs the likelihood 
value of each fixed sensor node whose location is known. 
 The output signal hm,n from the intermediate layer m-th 
cell to the output layer n-th cell is expressed as the following 
equations using a sigmoid function f (x): 
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where xi is the i-th input signal, wi,m,n is the weight of the 
intermediate layer m-th cell from the i-th input signal to the 
output layer n-th cell, and vm,n is the bias value of the 
intermediate layer m-th cell to the output layer n-th cell. 
Because a sigmoid function is used as the output function, 
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the data must be normalized so that the absolute value of the 
input signal value is 1 or less. The output signal on of the 
output layer n-th cell can be expressed as: 
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where wom,n is the weight of the output layer n-th cell from 
the intermediate layer m-th cell signal, and von is the bias 
value of the output layer n-th cell. 
 The weight wi,m,n of the intermediate layer m -th cell 
from the i-th input signal to the output layer n-th cell can be 
updated as follows. 
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where  is a learning coefficient, and En is the error of the 
output layer n-th cell. 
 The weight wom,n of the output layer n-th cell from the 
intermediate layer m-th cell can be updated as: 
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where tn is the teacher data of the output layer n-th signal.  
 After a set of learning data is input to a neural network, 
the weights and bias values of all cells are updated by the 
procedure described above. This learning process is 
performed for all sets of learning data, and the neural 
network iteratively learns more than 108 times. 
 
 

 
 

Fig. 1  Two-dimensional neural network. 

 

 

Fig. 2  Nearest sensor node neural network. 

 

 

 

 

 

3. Experiment 

All sensor nodes used in the experiment contained a ZigBee 
TWE-lite DIP radio module [13] and a sensor. The 
specifications of the ZigBee module are shown in Table 1. 
Figure 3 shows an overview of the sensor nodes. Sensor 
TSL2561 [14] measures illuminance, and sensor SHT-21 
[15] measures temperature and humidity. 
 

Table 1. Specifications of ZigBee  
TWE-lite DIP radio module.  

Radio standard IEEE 802.15.4 

Radio frequency 2.5 GHz 

Number of channels 16 channels 

Modulation scheme O-QPSK, DSSS 

Transmission rate 250 kbps 

Transmit power +2.5 dBm 

Receiver sensitivity −95 dBm 

 
 

x1

xI

w1,1,1

wI,1,1

…

w1,2,1

wI,2,1

…
…w1, M,1

wI,M,1

…
…

w1,1,2

w1,2,2

w1, M,2

wI,1,2

wI,2,2

wI, M,2

h1,1ν1,1

ν2,1

νM,1

ν1,2

ν2,2

νM,2 hM,2

h2,1

hM,1

h1,2

h2,2

wo1,1

woM,1

wo1,2

woM,2

νo1

…
…

…

…
…

νo2 o2

o1

intermediate layer

input layer

output layer

Distance

Floor number

w1,1,1

wI,1,1

…

w1,M,1

wI, M,1

…
…w1,1,2

wI,1,2

…
…

w1, M,2

w1,1,N

w1,M, N

wI, M,2

wI,1,N

wI,M, N

h1,1ν1,1

νM,1

ν1,2

νM,2

ν1,N

νM,N hM,N

hM,1

h1,2

hM,2

h1,N

wo1,1

woM,1

wo1,N

woM,N

νo1

…
…

…

…
…

νoN oN

o1

wo1,2

woM,2

… νo2 o2…
…

intermediate layer
output layer

x1

xI

input layer



2022 International Conference on Emerging Technologies for Communications (ICETC 2022) 
3 

Fig. 3  Overview of sensor nodes. 
 
As shown in Figure 4, the experiment was performed on the 
fourth to sixth floors of Building 3 at the Yagiyama Campus 
of Tohoku Institute of Technology. Three access points 
(APs) were fixed at the navy circle shown on the Figure 4 
and connected to a PC. Five fixed sensor nodes C (indicated 
by red circles) were placed at 5-m intervals on each floor. 
The sensor nodes measured multiple items of sensed 
information, i.e., temperature, humidity, and illuminance. A 
moving sensor node E (green triangle) also measured the 
same items while moving at each place. The measurement 
duration was 5 minutes each location, and the items acquired 
by each sensor node were transmitted every 10 seconds and 
recorded on the PC connected to the AP by using a Tag 
Viewer [16]. The items obtained by all fixed sensor nodes 
were used as teacher data for machine learning. After 
learning the teacher data, the location of the moving sensor 
node was estimated using the learned neural networks. 
 

 
Fig. 4 Experimental layout. 

 
 

4. Experimental Results 

We then used both proposed neural networks for location 
estimation. The received signal power at three APs and the 
three items of sensed information (temperature, humidity, 
illuminance) were used as the input signal. Because the 
sensed information was time varying, the receiving time was 
also used for input signals for the neural networks. Thus, the 
number of input layers I was 7. For the two-dimensional 
neural network (Figure 1), one output layer output the 
distance from an AP, and the other output the number of 
floors. Because there were 15 fixed sensor nodes, the 
number of output layers N was 15 in the nearest node neural 

network (Figure 2). In the training process of both neural 
networks, 3600 data sets were used as the teacher data, and 
training was carried out for more than 108. 
 Figure 5 shows the coincidence probability between the 
estimated location and actual location. In the case of the two-
dimensional neural network, it was assumed that the 
estimated location coincided with the actual location when 
the difference between the estimated distance and the actual 
distance was smaller than 2.5 m, and the estimated floor 
number is coincident with the actual floor number. To 
validate the learning process, the location of the fixed sensor 
node was also estimated by using the original learning data. 
As seen in Figure 4, the coincidence probability was almost 
100% when the locations of the fixed sensor nodes were 
estimated, indicating the validity of the learning process for 
both neural networks. 
 When the location of the moving sensor node was 
estimated, the coincidence probability using the nearest 
node neural network was 72.5%, which is higher than that 
using the two-dimensional neural network (37.8%). The 
reason for this can be considered bellow. When using the 
two-dimensional neural network, both the distance from the 
AP and the number of floor must be estimated correctly. 
Furthermore, there are 3 different number of floors for the 
same distance from the AP, and 5 different distances from 
the AP for the same number of floors. On the other hand, 
when using the nearest node neural network, it can estimate 
the location correctly only to find the cell with the highest 
likelihood value among the cells corresponding to each node, 
resulting in a higher coincidence probability. 
 

 

 
Fig. 5 Coincidence probability between estimated and 
actual locations.  
 
 
 

5. Conclusions 

We proposed a two-dimensional neural network and a 
nearest node neural network which use multiple items of 
sensed information for location estimation. The neural 
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networks were experimentally evaluated for various 
altitudes in an indoor environment. The results indicated that 
the location estimation using the nearest node neural 
network yields a higher coincidence probability than that 
using the two-dimensional neural network. 
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