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SUMMARY Mobile robots need to be controlled to perform 

the required tasks without collisions with obstacles. 

However, there are moving obstacles such as other robots 

and people in the work area of the mobile robot. To control 

the robot efficiently without collisions with such obstacles, 

it is important to predict the risk of collisions at each location 

and each time. In this paper, we propose a framework that 

aggregates the information from sensors and predicts future 

states at each location to calculate the risks. This framework 

is based on the spatio-temporal model. In this framework, 

we introduce a manager that maintains the spatio-temporal 

model. We also deploy sensors in the environments. Then 

sensors send the monitored information to the manager. The 

manager maps the monitored information to the spatio-

temporal model and updates the current and predicted future 

states. In this paper, we also demonstrate that the spatio-

temporal model can predict the existence of obstacles at 

future time slots. 
keywords: Cloud, Robot, Control, Prediction, Conditional Random Field 

1. Introduction 

Moving robots has become widely used in many areas such 

as factories and warehouses and are becoming used even in 

the areas with the interactions with people [1]. In such areas, 

robots are required to complete their tasks as immediately as 

possible while they must avoid accidents such as collisions 

to people or other robots. One approach to avoiding 

collisions is to stop the robot when a person or another robot 

close to the robot is detected [2]. But this approach degrades 

the performance of the robot. 

By knowing the risk, we can avoid such risks without 

significant degrading the performance of the robots. For 

example, the robots can move fast if the risk is low. In 

addition, the robots can select the paths to avoid the risk.  

The risk changes in time. For example, the area near people 

or robots has a high risk of collision. But people and robots 

move. As a result, the areas with high risks of collision 

changes. Therefore, the information of the risks should be 

updated to follow the changes of the environment. 

Many robots have the sensors such as camera, ToF (Time-

of-Flight) camera, and LiDAR (light detection and ranging) 

and can detect obstacles near them [3]. But the sensors of 

each robot are insufficient to calculate the risks because they 

cannot detect people coming from a blind spot. Therefore, 

aggregating the information from many sensors is required 

to know the risk. 

In addition, not only the current states but also the future 

states are required to know the risk of collisions; even if a 

robot exists near another robot, the risk of collisions is low 

if they are going away from each other. 

In this paper, we propose a framework that aggregates the 

information from sensors and predicts future states of the 

environment. This framework is based on the spatio-

temporal model. In this framework, we introduce a manager 

that maintains the spatio-temporal model. We also deploy 

sensors in the environments. Then sensors send the 

monitored information to the manager. The manger maps the 

monitored information to the spatio-temporal model and 

updates the current and predicted future states. 

2. Framework to Aggregate Information from Sensors 

based on Spatio-Temporal Model 

Figure 1 shows the framework. In this framework, we 

introduce a server called manager. The manager has a spatio-

temporal model of the target area. In this model, the target 

area is divided into multiple subareas, and the time is also 

divided into time slots. Then, the manager estimates or 

predicts the state for each subarea at each time slot. The 

spatio-temporal model includes the relation between the 

state and observation related to each subarea, and the 

relation between the states of near subareas. By using such 

relations, we can estimate and predict the probabilities of 

states of subareas whose information is not obtained yet 

from the monitored information. 

In this framework, sensers are deployed in the area. The 

sensors extract features for subareas based on their 

observations and send the extracted features to the manager. 

The manager maps the information from the sensors to the 

spatio-temporal model and updates the spatio-temporal 

model based on the information. 

   †The authors are with Graduate School of Information 
Science and Technology, Osaka University. 

 †† The authors are with Data Science Research Laboratories, 
NEC Corporation. 

   a) E-mail: y-ohsita@ist.osaka-u.ac.jp 

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2022 International Conference on Emerging Technologies for Communications (ICETC 2022) 
2 

 

When controlling a robot, the controller of the robot requires 

only the information near the robot. In our framework, such 

required information can be extracted by extracting the 

subset of the spatio-temporal model. Then, the controller 

calculates the command based on the extracted information. 

3. Spatio-Temporal Model to Estimate and Predict the 

States of Obstacles 

3.1 Overview 

In this section, we introduce a model that captures the 

correlation between subareas. The model should capture 

both of the spatial and temporal correlations. For example, 

if an obstacle that spans multiple spatial subareas exists, the 

states of all the subareas should be the same. Similarly, if an 

obstacle exists in a certain subarea, the obstacle may exist in 

the same subarea or adjacent subarea in the next time slot.  

In this paper, we construct the spatio-temporal model 

including the above relation between the subareas based on 

the conditional random field [4]. In the conditional random 

field, the random variables are represented as vertices and 

the correlation between the variables are represented as 

edges between nodes. Figure 1 shows the spatio-temporal 

model based on the conditional random field. 

 

In this model, we construct multiple layers based on the 

speed of the moving obstacle because the related subareas at 

the next time slot, which are required to be connected, 

depend on the speed of the moving obstacle. In each layer, 

we define a random variable to each subarea at each time 

slot. Each random variable is shown as a vertex in the figure. 

Edges are added between the nodes that are adjacent at the 

same time slot. Edges between the nodes at the different 

layers for the same subarea at the same time slot are also 

added. Further, edges are also added between the nodes in 

the adjacent time slots where the obstacle whose speed is 

within the range handled by the layer may move. Hereafter, 

we denote the states of the subarea 𝑥, 𝑦 at the time slot 𝑡 
at the layer 𝑙 by 𝑜𝑙,𝑡,𝑥,𝑦. We also denote the observation of 

𝑥, 𝑦 at the time slot 𝑡 by 𝑑𝑡,𝑥,𝑦. 𝑂 is a matrix including 

𝑜𝑙,𝑡,𝑥,𝑦 for all subareas, time slots and layers. 𝐷 includes all 

observations. 

In this spatio-temporal model, the probability distribution 

𝑃(𝑂|𝐷)  of the variable 𝑂  when the observation 𝐷  is 

obtained is defined as follows. 

𝑝(𝑂|𝐷) =
1

𝑍(𝐷)
exp(𝐸(𝑂; 𝐷)) 

where 𝑍(𝐷)  is a value defined so that ∑ 𝑝(𝑂|𝐷)𝑂 = 1 , 

and 
𝐸(𝑂;𝐷)

= ∑ 𝑓𝑙,𝑥,𝑦
(𝑡,𝑥,𝑦)∈𝑁

(𝑜𝑙,𝑡,𝑥,𝑦; 𝑑𝑡,𝑥,𝑦)

+ ∑ 𝑓(𝑙1,𝑥1,𝑦1),(𝑙2,𝑡2,𝑥2,𝑦2)(𝑜𝑙1,𝑡1,𝑥1,𝑦1𝑜𝑙2,𝑡1+𝑡2,𝑥2,𝑦2; 𝑑𝑡1,𝑥1,𝑦1, 𝑑𝑡1+𝑡2,𝑥2,𝑦2)

((𝑙1,𝑡1,𝑥1,𝑦1),(𝑙2,𝑡1+𝑡2,𝑥2,𝑦2))∈𝐸

 

where 𝑁 is a set of vertices, and 𝑓𝑙,𝑥,𝑦(𝑜𝑙,𝑡,𝑥,𝑦; 𝑑𝑡,𝑥,𝑦) is a 

function of random variable 𝑜𝑙,𝑡,𝑥,𝑦 defined by the observed 

value 𝑑𝑡,𝑥,𝑦 , 𝐸  is a set of edges, 

𝑓(𝑙1,𝑥1,𝑦1),(𝑙2,𝑡2,𝑥2,𝑦2)(𝑜𝑙1,𝑡1,𝑥1,𝑦1𝑜𝑙2,𝑡1+𝑡2,𝑥2,𝑦2; 𝑑𝑡1,𝑥1,𝑦1, 𝑑𝑡1+𝑡2,𝑥2,𝑦2)  is a 

function of the random variables 𝑜𝑙1,𝑡1,𝑥1,𝑦1 and 𝑜𝑙2,𝑡2,𝑥2,𝑦2 

which correspond to the both ends of the edge 

(𝑙1, 𝑡1, 𝑥1, 𝑦1), (𝑙2, 𝑡1 + 𝑡2, 𝑥2, 𝑦2) and is defined by the 

observed values 𝑑𝑡1,𝑥1,𝑦1 and 𝑑𝑡1+𝑡2,𝑥2,𝑦2.  

In this model, the marginal probability 𝑝(𝑜𝑙,𝑡,𝑥,𝑦|𝐷)  is 

obtained by approximate calculation using Loopy BP [5]. In 

this paper, the state of each subarea is defined as a label that 

is set based on the movement of the obstacle. Then, after 

obtaining the marginal probability 𝑝(𝑜𝑙,𝑡,𝑥,𝑦|𝐷) , we can 

predict the probability of the existence of the obstacles in the 

subarea 𝑥, 𝑦  at time slot 𝑡  as 1 −

min
𝑙
𝑝(𝑜𝑙,𝑡,𝑥,𝑦 = 𝑁𝑜𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒|𝐷)  where 𝑁𝑜𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒  is 

the label corresponding to the states without any obstacles. 

3.2 Estimation based on Spatio-Temporal Model 

The manager obtains the information from sensors. Then the 

manager maps the obtained information to the model by 

applying the functions 𝑓𝑙,𝑥,𝑦(𝑜𝑙,𝑡,𝑥,𝑦; 𝑑𝑡,𝑥,𝑦)  and 

𝑓(𝑙1,𝑥1,𝑦1),(𝑙2,𝑡2,𝑥2,𝑦2)(𝑜𝑙1,𝑡1,𝑥1,𝑦1𝑜𝑙2,𝑡1+𝑡2,𝑥2,𝑦2; 𝑑𝑡1,𝑥1,𝑦1, 𝑑𝑡1+𝑡2,𝑥2,𝑦2) based 

on the obtained information. After mapping the obtained 

information, the manager updates the model by removing 

the nodes corresponding to the time slot more than the 

predefined time ago and adding the nodes for the time slots 

within the prediction target. 

Then, the manager calculates marginal probability 

𝑝(𝑜𝑙,𝑡,𝑥,𝑦|𝐷) by using the Loopy BP algorithm [5]. Finally, 

the state of each subarea is obtained by 𝑝(𝑜𝑙,𝑡,𝑥,𝑦|𝐷). 

Fig. 2  Spatio-temporal model. 

Fig. 1  Overview. 



2022 International Conference on Emerging Technologies for Communications (ICETC 2022) 
3 

3.3 Training of Spatio-Temporal Model 

In this paper, we set the functions 𝑓𝑙,𝑥,𝑦(𝑜𝑙,𝑡,𝑥,𝑦; 𝑑𝑡,𝑥,𝑦) 

and 𝑓(𝑙1,𝑥1,𝑦1),(𝑙2,𝑡2,𝑥2,𝑦2)(𝑜𝑙1,𝑡1,𝑥1,𝑦1𝑜𝑙2,𝑡1+𝑡2,𝑥2,𝑦2; 𝑑𝑡1,𝑥1,𝑦1, 𝑑𝑡1+𝑡2,𝑥2,𝑦2) 

by using the previous observations as a training data. To 

set the functions, we first set the labels to each subarea by 

grouping obstacles having similar trajectories and setting 

the label to each group. Then, we set the functions 

𝑓𝑙,𝑥,𝑦(𝑜𝑙,𝑡,𝑥,𝑦; 𝑑𝑡,𝑥,𝑦)  and 

𝑓(𝑙1,𝑥1,𝑦1),(𝑙2,𝑡2,𝑥2,𝑦2)(𝑜𝑙1,𝑡1,𝑥1,𝑦1𝑜𝑙2,𝑡1+𝑡2,𝑥2,𝑦2; 𝑑𝑡1,𝑥1,𝑦1, 𝑑𝑡1+𝑡2,𝑥2,𝑦2) 

based on the label. The tendency of obstacle movement 

depends on the location as well as the type of obstacle. 

Therefore, in this paper, we define these functions based 

on the location. 

𝑓𝑙,𝑥,𝑦(𝑜;  𝑑) is 

𝑓𝑙,𝑥,𝑦(𝑜;  𝑑) =
𝑁𝑢𝑚𝑏𝑒𝑟[𝐷𝑡,𝑥,𝑦 = 𝑑, 𝑂𝑙,𝑡,𝑥,𝑦 = 𝑜]

𝑁𝑢𝑚𝑏𝑒𝑟[𝐷𝑡,𝑥,𝑦 = 𝑑]
 

where 𝐷𝑡,𝑥,𝑦  is the observed value of subarea 𝑥, 𝑦  at 

time slot 𝑡 in the training data, and 𝑂𝑙,𝑡,𝑥,𝑦 is the label 

of subarea 𝑥, 𝑦  at time slot 𝑡  at layer 𝑙 , and 

𝑁𝑢𝑚𝑏𝑒𝑟[ ]  indicates the number of elements of 

training data that satisfy the conditions in [ ] . If the 

observed value cannot be obtained, it is determined as 

follows. 
𝑓𝑙,𝑥,𝑦(𝑜;  𝑁𝑜𝑛𝑒)

= {

𝛼 𝑜 indicates no obstacles

(1 − 𝛼)
𝑁𝑢𝑚𝑏𝑒𝑟[𝑂𝑙,𝑡,𝑥,𝑦 = 𝑜]

𝑁𝑢𝑚𝑏𝑒𝑟[𝐷𝑡,𝑥,𝑦]
otherwise  

Similarly, 
𝑓(𝑙1,𝑥1,𝑦1),(𝑙2,𝑡2,𝑥2,𝑦2)(𝑜1𝑜2; 𝑑1, 𝑑2)

=
[𝐷𝑙1,𝑡1,𝑥1,𝑦1 = 𝑑1, 𝐷𝑙2,𝑡1+𝑡2,𝑥2,𝑦2 = 𝑑2, 𝑂𝑡1,𝑥1,𝑦1 = 𝑜1, 𝑂𝑡1+𝑡2,𝑥2,𝑦2 = 𝑜2]

[𝐷𝑡1,𝑥1,𝑦1 = 𝑑1, 𝐷𝑡1+𝑡2,𝑥2,𝑦2 = 𝑑2]
 

If the observed values cannot be obtained, 
𝑓(𝑥1,𝑦1),(𝑡2,𝑥2,𝑦2)(𝑜1𝑜2; 𝑁𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒)

=

{
 
 

 
 

𝛽 𝑜1 and 𝑜2 indicates no obstacles
𝛾 only 𝑜1 indicates no obstacles
𝜃 only 𝑜2 indicates no obstacles

𝑁𝑢𝑚𝑏𝑒𝑟[𝐷𝑡1,𝑥1,𝑦1 = 𝑑1, 𝐷𝑡1+𝑡2,𝑥2,𝑦2 = 𝑑2]

𝑁𝑢𝑚𝑏𝑒𝑟[𝐷𝑡1,𝑥1,𝑦1, 𝐷𝑡1+𝑡2,𝑥2,𝑦2]
otherwise

 

3.4 Reduction of computational time 

The target area may include many subareas and prediction 

for such large area takes long time. But the number of the 

subareas including obstacles is small. Therefore, we can 

reduce the calculation time by focusing only on the 

subareas that may include obstacles. In this paper, we 

exclude the subareas whose observation indicates that 

they have no obstacles. In addition, we add only the nodes 

that may have obstacles by recursively adding the nodes 

that is connected to the nodes that have already been 

added after adding the nodes whose corresponding 

observations indicate they have obstacles. 

4. Experiment 

In this paper, we demonstrate that our framework predicts 

the existence of obstacles by simulation. In this simulation, 

we generate a moving obstacle and predict the existence of 

the obstacle. We implement the spatio-temporal model by 

using Direct Graphical Models C++ Library [6]. 

4.1. Environment 

4.1.1. Moving obstacle 

In this experiment, we use the area shown in Figure 3. The 

size of this area is 100 × 100 and divided into subareas 

whose size is 1 × 1. This area has two roads that intersect 

in one point. The widths of the roads are 10. 

We generate one moving obstacle that enters the area from 

randomly selected point. Then, the obstacle randomly 

changes the direction at the intersection. The speed of the 

moving obstacle is set to the values randomly selected 

from 1 to 3 subareas per time slot. After entering the area, 

the moving obstacle does not change the speed. 

 

4.1.2. Definition of observations 

In this experiment, we assume that we have sensors that 

can detect existence of the obstacles in each subarea and 

information of the existence of obstacles is sent to the 

manager. By using the information on the detected 

obstacles, the manager extracts the following information 

𝑑𝑡,𝑥,𝑦 = [𝑑𝐸𝑋𝐼𝑆𝑇𝑡,𝑥,𝑦 , 𝑑
𝑀𝑂𝑉𝐸

𝑡,𝑥,𝑦 , 𝑑
𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁

𝑡,𝑥,𝑦] 

𝑑𝐸𝑋𝐼𝑆𝑇𝑡,𝑥,𝑦  is a flag indicating the existence of the 

obstacles. 𝑑𝐸𝑋𝐼𝑆𝑇𝑡,𝑥,𝑦 = 1  if obstacles exist in the 

subarea 𝑥, 𝑦  at time slot 𝑡 , and 𝑑𝐸𝑋𝐼𝑆𝑇𝑡,𝑥,𝑦 = 0 

otherwise. 𝑑𝑀𝑂𝑉𝐸𝑡,𝑥,𝑦 is the information of the direction 

of the moving obstacles in the subarea 𝑥, 𝑦 at time slot 

𝑡 . 𝑑𝑀𝑂𝑉𝐸𝑡,𝑥,𝑦  is constructed of 8 bits. Each bit 

corresponds to the direction and is set to 1 if the obstacle 

exists in the subarea in the corresponding direction at the 

previous time slot. 𝑑𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑡,𝑥,𝑦 is the information of 

the location within the obstacles. 𝑑𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑡,𝑥,𝑦 is also 

constructed of 8 bits. Each bit is set to 1 if there does not 

exist any obstacles in the near subarea in the 

corresponding direction. By extracting the above 

information, we can extract the information to identify the 

direction of the moving objects. 

4.1.3. Training 

In this experiment, we generate 20 moving obstacles and 

train the spatio-temporal model with 3 layers each of 

which handles the obstacles whose speeds are 1, 2, and 3 

Fig. 3  Target area. 
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subareas per time slot. When training the model, we set 

the label of the obstacles based on the speed and direction 

of the obstacles; the obstacles going to the same direction 

with the same speed are given the same label. When the 

obstacle changes the direction, we set the different label 

before and after changing the direction.  

In this experiment, we construct the model including past 

10 time slots to predict the states of the future 4 time slots. 

In this paper, we set 𝛼 to 0.9, 𝛽 to 1, 𝛾 to 0.9 and 𝜃 

to 0.0001. 

After training the model, we generate the moving 

obstacles included in the trained model and demonstrate 

the prediction based on the trained model.  

4.2. Results 

Figure 4 shows examples of the prediction. Figure 4 (a) 

shows the prediction in the subareas near the intersection, 

and Figure 4 (b) shows the prediction in the subareas 

without the intersection. Both figures indicate the 

prediction results as of 4 time slots ago. In this figure, the 

subarea whose predicted probability of existence of 

obstacles is large is shown as the dark orange area. We 

also plot the subareas that actually include obstacles as 

red square. 

As shown in this figure, when the obstacle goes straight, 

our model can accurately predict the future position of the 

obstacle. When the obstacle changes the direction, our 

model cannot accurately predict the obstacle’s position 

but can predict the subareas that may include the obstacles. 

As a results, the actual position of the obstacle is within 

the subareas that are predicted as the subareas that may 

include obstacles. 

       
(a)Near the intersection        (b) On the straight road 

We also evaluate the accuracy of the prediction. To evaluate 

the accuracy, we set the threshold to the predicted 

probability and regard the subareas exceeding the threshold 

as the subareas with obstacles. We count the subareas that 

include the obstacles but are not predicted as the subareas 

with obstacles (False Negatives; FNs). We also count the 

subareas that are predicted as the subareas with obstacles but 

include no obstacles (False Positives; FPs). By counting 

above subareas, we define the following metrics. 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
# 𝑜𝑓 𝐹𝑁𝑠

# 𝑜𝑓 𝑠𝑢𝑏𝑎𝑟𝑒𝑎𝑠 𝑤𝑖𝑡ℎ 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠
 

𝐹𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒

=
# 𝑜𝑓 𝐹𝑃𝑠

# 𝑜𝑓 𝑠𝑢𝑏𝑎𝑟𝑒𝑎𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑠𝑢𝑏𝑎𝑟𝑒𝑎𝑠 𝑤𝑖𝑡ℎ 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠
 

We change the threshold to the predicted probability of 

existence of the obstacles from 0 to 1 with an interval of 0.01 

and obtain the false negative rates and false discovery rates. 

Figure 5 shows the results. This figure demonstrates that our 

model accurately predicts the future position of the obstacles, 

while the accuracy slightly decreases as the prediction target 

becomes future. 

  

5. Conclusion and Future Work 

In this paper, we proposed a framework that aggregates the 

information from sensors and predicts future states of the 

environment based on the spatio-temporal model. In this 

framework, we introduce a manager that maintains the 

spatio-temporal model. We also deploy sensors in the 

environments. Then sensors send the monitored information 

to the manager. The manager maps the monitored 

information to the spatio-temporal model and updates the 

current and predicted future states. 

We evaluated the spatio-temporal model included in our 

framework by simulation. The results demonstrate that the 

spatio-temporal model can predict the existence of the 

obstacles. 

Our future work includes the evaluation of the control of 

moving robots based on the risk calculated by our 

framework. 
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