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Estimation of the Number of Obstacles
Based on 𝒑-value for V2V Communications

Keita KATAGIRI†a), Student Member, Koya SATO††b), Member, and Takeo FUJII†c), Fellow

SUMMARY Vehicle-to-vehicle (V2V) communications have been con-
tinuously studied to realize reliable autonomous driving systems. Con-
ventional works have clarified that multiple obstacle vehicles between a
transmitter and a receiver have a strong effect on radio propagation char-
acteristics. It is necessary to design communication parameters according
to the number of obstacle vehicles for improving the robustness of V2V
communications. This paper describes a method to estimate the number of
obstacle vehicles using a small sample size based on a 𝑝-value, which is
typically utilized in hypothesis testing. The cloud server first calculates the
average received signal power for each number of obstacle vehicles assum-
ing that each number is known. Subsequently, the number of obstacles is
estimated by using newly reported samples. The simulation results reveal
that the proposed method can accurately predict the number of obstacles
using a small sample size.
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1. Introduction

To realize reliable autonomous driving systems, many
researchers are continuously studying vehicle-to-vehicle
(V2V) communications [1, 2]. Vehicles communicate with
each other and share safety information, such as approach of
an emergency vehicle, in V2V communications. As the dedi-
cated frequency for the V2V communications, 5.9 GHz band
is assigned in the USA and Europe, meanwhile, 700 MHz
band is utilized in Japan. Different from a wireless system
with a fixed location of a transmitter (e.g., a cellular net-
work), both transmitters and receivers dynamically move in
the V2V communications. Hence, communication quality
notably becomes poor owing to the fluctuation of radio prop-
agation characteristics, such as a path loss. It is necessary to
predict those characteristics with high accuracy to guarantee
reliability of V2V communications.

A fundamental method of radio propagation estimation
is an empirical propagation model (e.g. the Okumura–Hata
model). Although this model enables us to roughly predict
the median path loss, estimation accuracy against a true
received signal power limits to around 8 [dB] owing to the
shadowing [3].

We have considered utilization of a radio map [4–9]
for V2V communications [10] to solve the above problem.
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In this method, distributed vehicles having sensing devices
first observe radio propagation information in each location
and upload measured samples to a cloud server. The cloud
server divides the communication area into two-dimensional
meshes and calculates the average received signal power in
each mesh. Subsequently, the constructed statistical infor-
mation is stored as the radio map in each transmission mesh
on the cloud server. Radio maps enable us to accurately esti-
mate the path loss and the shadowing in each mesh compared
to the empirical propagation model [10].

However, the above method does not consider the sit-
uation that obstacle vehicles, such as a truck, exist between
a transmitter and a receiver. Many researchers have con-
ducted measurement campaign and theoretical analysis to
survey effects of obstacle vehicles on radio propagation char-
acteristics [11–20]. Especially, H. Nguyen et al. [20] have
revealed that the shadowing loss linearly increases according
to the number of obstacle vehicles. To improve the robust-
ness of V2V communications, a transmitter must estimate
the number of obstacle vehicles and design own communi-
cation parameters based on the estimation result. Although
conventional works assume that the number of obstacle ve-
hicles is known, a transmitter may not know this number
due to a non-line-of-site in realistic V2V communications.
Additionally, it is difficult to obtain enough number of sam-
ples in a fixed location owing to the dynamic mobility of a
transmitter and a receiver.

Motivated by these facts, this paper describes a method
for estimating the number of obstacle vehicles using a small
sample size based on a 𝑝-value. The cloud server first cal-
culates the average received signal power for each number
of obstacle vehicles assuming that each number is known.
Subsequently, the number of obstacles is estimated by using
newly reported samples. The simulation results reveal that
the proposed method can accurately predict the number of
obstacles using a small sample size.

The remainder of this paper is organized as follows.
Section 2 describes the system model. After Section 3 ex-
plains the proposed method, Section 4 shows the simulation
results. Then, we conclude this paper in Section 5.

2. System Model

2.1 Measurement Model

Fig. 1 shows the system model. We consider a simple situ-
ation that the V2V communication is performed in the con-
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Fig. 1: The system model.

stant link distance 𝑑 [m]. A transmitter sends a beacon signal,
including own position information and the ID, to a receiver
every 100 [ms] based on IEEE 802.11p. The receiver uploads
these data in addition to the received position, the received
signal power, and the center frequency to the cloud server
after demodulating the transmitted beacon signal. Here, we
assume that there are 0 to 𝑀 obstacle vehicles (in the fol-
lowing, we call obstacle vehicles as obstacles) between the
transmitter and the receiver, here,𝑀 is the maximum number
of obstacles. The proposed method described in Section 3
calculates the 𝑝-value to estimate the number of obstacles
using 𝑛ini and 𝑛new received signal power samples. Here, it
is necessary to accumulate 𝑛ini samples for each number of
obstacles in advance assuming that the number of obstacles
is known. Thus, each 𝑛ini sample is assumed to be stored on
the cloud server by pre-observation. After the accumulation,
the receiver uploads 𝑛new samples to the cloud server when
the number of obstacles is unknown.

The cloud server estimates the number of obstacles us-
ing the proposed method and provides the estimation result
to the transmitter. The transmitter adaptively designs com-
munication parameters, such as the modulation format, ac-
cording to the number of obstacles. For instance, a low order
modulation is utilized if the number of obstacles is large to
secure communication reliability. Here, we assume that the
number of obstacles is constant until the transmitter sends
the beacon signal using the provided estimation result.

Since the instantaneous received signal power contains
the effect of the small-scale fading, the proposed method
may not operate with high accuracy. Although such the fad-
ing variation can be mitigated by sharing enough datasets
between several vehicles, the communication reliability de-
grades according to the surrounding environment. Thus,
enough measured samples are accumulated in the cloud
server.

If each obstacle mounts global positioning system
(GPS), we may estimate the number of obstacles by ac-
cumulating GPS information on the cloud server. However,
ordinary people driving obstacle vehicles may feel uncom-
fortable when their location information are known by the
third party. Thus, we propose our method without using the
GPS.

2.2 Shadowing Model

This paper assumes that the shadowing in each obstacle fol-

lows statistically independent the log-normal distribution.
Here, it has been reported that the shadowing has the addi-
tivity of the mean in multiple obstacles environment [20].
Furthermore, we assume the additivity for the standard de-
viation. Thus, the mean and the standard deviation of the
log-normal shadowing in multiple obstacles can be modeled
as follows:

𝜇 𝑗 = 𝑗 𝜇1, (1)

𝜎𝑗 =
√
𝑗𝜎2

1 , (2)

where 𝜇 𝑗 [dB] and 𝜎𝑗 [dB] are the mean and the standard
deviation of the shadowing, respectively when the number
of obstacles is 𝑗 . 𝜇1 [dB] and 𝜎2

1 are the mean and the
variance of the shadowing, respectively for 𝑗 = 1.

3. Proposed Method

3.1 Preliminary Descriptions

A significant difference of the average received signal power
may be inferred in multiple obstacles environment if the
shadowing has the additivity. Under this condition, we can
utilize the 𝑝-value of the hypothesis testing for estimating the
number of obstacles. If the significant difference between
two mean values is small, the 𝑝-value becomes large. Focus-
ing on the property, the proposed method first calculates the
𝑝-value based on 𝑛ini and 𝑛new samples. Subsequently, the
cloud server estimates the number of obstacles by searching
the maximum 𝑝-value. As the hypothesis testing, we use
Welch’s 𝑡-test because this method enables us to accurately
calculate the 𝑝-value compared to the general 𝑡-test and a
non-parametric test.

3.2 Estimation Procedures

To calculate the 𝑝-value, the 𝑡-value 𝑡 𝑗 and the degree of
freedom 𝑣 𝑗 when the number of obstacles is 𝑗 are defined as
follows:

𝑡 𝑗 =
�̄� 𝑗 − 𝑌√
𝑆2
𝑗

𝑛ini
+ 𝑆2

𝑛new

, (3)

𝑣 𝑗 ≈

(
𝑆2
𝑗

𝑛ini
+ 𝑆2

𝑛new

)2

(
𝑆2
𝑗

𝑛ini

)2

𝑛ini−1 +
(

𝑆2
𝑛new

)2

𝑛new−1

, (4)

where �̄� 𝑗 [dBm] and 𝑆2
𝑗 are the average received signal power

and unbiased sample variance when the number of obstacles
is 𝑗 , respectively. These values are calculated on the cloud
server using 𝑛ini samples in advance. 𝑌 [dBm] and 𝑆2 are the
average received signal power and unbiased sample variance
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using 𝑛new samples. Here, the cloud server calculates each
average received signal power as the logarithmic value rather
than the true value. This is because the 𝑝-value cannot be
accurately derived owing to the existence of outliers.

In Welch’s 𝑡-test, the calculated 𝑡-value follows the Stu-
dent’s 𝑡 distribution and its function is determined as

𝑓 (𝑡 𝑗 , 𝑣 𝑗 ) =
Γ

(
𝑣𝑗+1

2

)
√
𝜋𝑣 𝑗 Γ

(
𝑣𝑗
2

) (
1 +

𝑡2𝑗

𝑣 𝑗

)− 𝑣𝑗+1
2

, (5)

where Γ(·) is the gamma function. It should be noted that,
because 𝑣 𝑗 is required to be an integer, it is rounded off if it is
a decimal. Under this condition, we can obtain the 𝑝-value
by referring the tail of the Student’s 𝑡 distribution as follows:

𝑝 𝑗 =
∫ −𝑡 𝑗

−∞
𝑓 (𝜉, 𝑣 𝑗 ) 𝑑𝜉 +

∫ +∞

+𝑡 𝑗
𝑓 (𝜉, 𝑣 𝑗 ) 𝑑𝜉, (6)

where 𝜉 is an integral variable. This paper utilizes the two-
sided test in which a rejection region exists in both tails
of the Student’s 𝑡 distribution because the two-sided test is
statistically recommended as compared with the one-sided
test in most cases. Finally, the estimated number of obstacles
𝑗 is derived using the following function:

𝑗 = arg max
𝑗=0,1, · · · ,𝑀

(𝑝 𝑗 ). (7)

If 𝑑 is not constant, the number of obstacles may be
inaccurately estimated owing to the fluctuation of a path
loss. Even in this situation, we can estimate the number of
obstacles by removing the path loss effect from the average
received signal power based on the linear regression. Due to
space limitations, this task will be solved in future work.

In the realistic environment, if communication environ-
ment dynamically changes, the small-scale fading may dras-
tically fluctuate owing to the static scatters, such as buildings.
Hence, the assumed propagation models that will be de-
scribed in Section 4.1 may not be suitable in the site-specific
environment. As a result, the proposed method may not
elaborately estimate the number of obstacles. Even in such
the environment where the radio propagation is complicated,
the accuracy of the proposed method may be guaranteed by
increasing 𝑛ini and 𝑛new since the variation of fading can be
mitigated.

If a height of an obstacle is lower than the heights of
the transmitter and receiver, the proposed method may un-
derestimate the number of obstacles compared to the actual
numbers. However, in such the situation, we can consider
that the obstacle having lowe height does not exist because
no shadowing occurs by the obstacle.

4. Simulation Descriptions

4.1 Radio Propagation Model

We model the radio propagation model for calculating the
instantaneous received signal power as follows:

Table 1: The simulation parameters
Transmission power 𝑃Tx [dBm] 24
Path loss exponent 𝛾 3
Maximum number of obstacles 𝑀 3
Communication distance 𝑑 [m] 100
Reference distance 𝑑0 [m] 10
Mean 𝜇1 [dB] 12.7 [18]
Standard deviation 𝜎1 [dB] 6.7 [18]
𝐾-factors for 𝑗 = 0, 1 30.9 [11], 1.19 [16]
𝐹𝑗 for 𝑗 = 2, 3 Rayleigh fading
Center frequency [MHz] 760
The number of samples 𝑛ini 100

𝑃 𝑗 (𝑑) = 𝑃Tx − 𝐿0 (𝑑0) − 10𝛾log10

(
𝑑

𝑑0

)
−𝑊 𝑗 + 𝐹𝑗 ,(8)

where 𝑃 𝑗 (𝑑) [dBm] is the instantaneous received signal
power when the number of obstacles is 𝑗 . 𝑃Tx [dBm] is the
transmission power, 𝛾 is the path loss exponent, and 𝑑0 [m]
is reference distance. 𝑊 𝑗 [dB] is the log-normal shadowing
when the number of obstacles is 𝑗 . This random value is
obtained from the log-normal distribution with 𝜇 𝑗 and 𝜎𝑗 .
Note that no shadowing occurs for 𝑗 = 0. 𝐹𝑗 [dB] is the
small-scale fading for 𝑗 . 𝐿0 (𝑑0) [dB] is the free space path
loss, and its function is given by

𝐿0 (𝑑0) = 10log10

(
4𝜋𝑑0

𝜆

)2
, (9)

where 𝜆 [m] is the wavelength.

4.2 Simulation Parameters

Table 1 represents the simulation parameters. The number
of obstacles 𝑗 is determined [0, 3] on 𝑑 = 100 [m]. 𝜇1 and
𝜎1 are based on the measured values [18]. Additionally, for
𝑗 = 0, 1, the small-scale fading is modeled as the Nakagami–
Rice fading by referring the measurements [11, 16]. We
assume that 𝐹2 and 𝐹3 follow statistically independent the
Rayleigh fading because the 𝐾-factor may be small owing to
an increase in 𝑗 . The simulation procedures are summarized
as follows:

a). The instantaneous received signal power represented
Eq. (8) is obtained for 𝑛ini in each number of obstacles.
Then, the cloud server calculates �̄� 𝑗 and 𝑆2

𝑗 .
b). Additionally, 𝑛new samples are got based on Eq. (8) in

each number of obstacles. Then, 𝑌 is derived using
𝑛new samples. Subsequently, the cloud server estimates
the number of obstacles based on Eqs. (5), (6), and (7).

c). We evaluate the average success rate that can correctly
estimate the number of obstacles by performing the
procedures from a). to b). for 1,000 times.

In the simulation, 𝑊 𝑗 and 𝐹𝑗 are the random variable; thus,
these realizations are random in each sample.
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Fig. 2: The average estimated success rate for the number of
obstacles.

4.3 Results

Fig. 2 shows the average estimated success rate in each 𝑗 .
These results revealed that the proposed method could accu-
rately estimate the number of obstacles using the small num-
ber of samples (e.g. 𝑛new = 10). However, the rate slightly
became poor with an increase in 𝑗 because variance of the
received signal power was large owing to the additivity of
variance. It is necessary to use enough samples in such a sit-
uation for improving the success rate. The proposed method
will contribute to appropriately determine communication
parameters, such as the transmission power and modulation
format, according to the number of obstacles.

5. Conclusion

We have proposed the method for estimating the number of
obstacles in V2V communications based on the 𝑝-value. Our
method first accumulates the received signal power samples
for the number of obstacles in advance. Then, the num-
ber of obstacles is calculated by searching the maximum
𝑝-value. The simulation results have clarified that the pro-
posed method can accurately predict the number of obstacles.
As future work, the performance evaluation using measured
data in a real environment is considered.
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