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SUMMARY Body-coupled communication (BCC) is a short-range 
wireless technology that can link communication devices with the human 
body. The BCC channel is formed by a capacitive coupling between the 
body, devices, and earth. When another person approaches the BCC system, 
the person becomes inevitably involved in the system because of the 
coupling. In this situation, eavesdropping and accidental data transmission 
can occur. A feasible solution to this security problem is to detect the 
existence of the undesirable person based on the information of received 
signals. We emphasize that fiber-optic EO-OE converters are indispensable 
for correctly evaluating the received signals in BCC uplink channels 
because they are affected by electronic apparatuses. We demonstrated that 
an undesirable person can be detected with an accuracy of 96% by using 
machine learning. 
keywords: body-coupled communication, channel gain, classification, EO-
OE converter; machine learning. 

1. Introduction 

The concept of body-coupled communication (BCC) was 
proposed in 1996 to realize smart communication among 
multiple wearable devices [1]. The basic concept of BCC is 
that a human body can be utilized as a data transmission 
channel similar to cables. This novel idea can also be applied 
to communication between fixed and mobile devices [2]. 
BCC is also considered for realizing smart certification 
systems such as walk-through gates. At present, BCC 
technologies are being studied by many researchers because 
of their excellent abilities to link multiple devices [3]–[17]. 

A limitation of BCC is that eavesdropping and accidental 
data transmission can easily occur. We recently proposed a 
method to address this security problem [18]. The basic 
concept of this method is that the existence of an undesirable 
person involved in eavesdropping or accidental data trans-
mission can be detected by analyzing the received signals. If 
undesirable persons are correctly detected, the security 
problem can be avoided by using system-level measures. 
From a practical viewpoint, it is preferable to analyze signals 
received by fixed devices instead of mobile devices. In other 
words, the signals received by the uplink channels should be 
analyzed. Although the proposed method worked well in 
downlink channels [18], its effectiveness has not yet been 
investigated in uplink channels. 

Based on these reasons, we investigated the feasibility of 
detecting an undesirable person in BCC uplink channels. We 
emphasized that photonic techniques play an important role 

in correctly evaluating the received signals. The process of 
detecting an undesirable person is equivalent to binary 
classification problems. We demonstrated that machine 
learning can effectively solve our classification problem. 

2. Concepts and Models of BCC Uplink Channels 

A conceptual image of a BCC uplink channel is presented in 
Fig. 1. We refer to the situation shown in Fig. 1 as an 
“ordinary state.” Data signals generated by a mobile 
transmitter (M-TX) are applied between a pair of electrodes 
(M and M). The human body is regarded as a conductor 
covered by insulators, such as skin, clothes, and shoes. 
When an M-TX exists in the vicinity of the human body, 
conduction currents flow inside the body. A fixed receiver 
(F-RX) is connected to a pair of electrodes (F and F). 
When Person 1 equipped with the M-TX rides on F, 
received currents are induced inside the F-RX. After passing 
through the F-RX, the currents flow within the earth. 
Because M and the earth form a capacitor, the currents 
return from the earth to M in the form of electric fields, and 
these are called displacement currents. The BCC uplink 
channel in this ordinary state is expressed by a simple RC 
circuit model, as shown in Fig. 2. Note that the electric fields 
are represented by the capacitors. 

Figure 3 shows a conceptual image of the BCC uplink 
channel when an undesirable person (Person 2) is involved. 
Let us refer to the situation shown in Fig. 3 as an 
“extraordinary state.” In this state, Person 1 without an M-
TX stands on F, and Person 2 equipped with an M-TX 
exists in the vicinity of Person 1. Although Person 2 does not 
stand on F, Person 2 can communicate with the F-RX via 
Person 1. From a communication security perspective, this 
is an undesirable situation because eavesdropping and 
accidental data transmission can occur. The BCC uplink 
channel in this extraordinary state can be represented by an 
RC circuit model shown in Fig. 4.  

We define the channel gain, 𝐺 𝑓 , of the BCC channels 
as 

𝐺 𝑓 ≜
𝑉 𝑓
𝑉 𝑓

, 1  

where 𝑉 𝑓  and 𝑉 𝑓  are input and output voltages, 
respectively, as shown in Figs. 2 or 4. Note that 𝐺 𝑓   is 
equivalent to 𝑉 𝑓   because 𝑉 𝑓   is known in 
advance. Furthermore, we denote the channel gains under   
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Fig. 1  Conceptual image of a BCC uplink channel in an ordinary state. 

 

 
 
Fig. 2  Equivalent circuit model of a BCC uplink channel in an ordinary 
state. 

 
 
ordinary and extraordinary states by 𝐺 𝑓   and 𝐺 𝑓  , 
respectively. Note that 𝐺 𝑓   and 𝐺 𝑓   depend on the 
parameters shown in Figs. 2 and 4, respectively. They are 
formally written as  

𝐺 𝑓 𝐺 𝑓;𝑅 ,𝑅 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 , 2  

𝐺 𝑓 𝐺 𝑓;𝑅 ,𝑅 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶 ,𝐶            
;𝑅 ,𝐶 ,𝐶 .                 3  

Equations (2) and (3) indicate that 𝐺 𝑓  and 𝐺 𝑓  hold 
traces of the ordinary and extraordinary states, respectively. 
This suggests that we can predict the unknown state 
(ordinary or extraordinary) by analyzing the 𝐺 𝑓  obtained 
by the F-RX. This is a binary classification problem of 
detecting the undesirable person, which is the objective of 
this study. 

 
 
Fig. 3  Conceptual image of a BCC uplink channel in an extraordinary 
state. 

 
 
Fig. 4  Equivalent circuit model of a BCC uplink channel in an extra-
ordinary state. 

 

3. Setup for Channel Gain Measurements 

To investigate the feasibility of binary classification, 𝐺 𝑓  
must be experimentally obtained under various conditions. 
Before measuring 𝐺 𝑓 , we must determine the influence 
of electronic apparatuses on BCC channels. Figure 5 shows 
the setup for measuring 𝐺 𝑓   by using purely electronic 
apparatuses. In this setup, M is inevitably earthed because 
the ground of a function generator (FG) is connected to M. 
However, in real situations, M is electrically isolated from 
the earth because mobile devices are powered by batteries 
and not by AC power supplies. Therefore, the setup shown 
in Fig. 5 is invalid. To correctly evaluate BCC channels, 
measurements must be performed while keeping M 
isolated from the earth. 
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Fig. 5  Setup for measuring BCC uplink channel gain by using purely 
electronic apparatuses. 

 

 
 
Fig. 6  Setup for measuring BCC uplink channel gain by using EO-OE 
converters. 

 
 

An effective approach for achieving isolation is to use 
photonic techniques. In this case, it is suitable to feed the 
input signals by using the electrical-to-optical (EO) 
converter and optical-to-electrical (OE) converter. The setup 
for measuring 𝐺 𝑓   by using the EO-OE converters is 
shown in Fig. 6. The electrical signals generated by the FG 
are input to the EO converter (E/O). A semiconductor laser 
diode installed in the EO converter is modulated by the 
electrical signals. The intensity-modulated light emitted 
from the laser diode is delivered to the OE converter (O/E) 
by an optical-fiber cable. Finally, the modulated light is 
converted into electrical signals by a photodiode inside the 
OE converter. Consequently, the OE converter replicates the 
signals generated by the FG. The replicated signals are 
applied between M and M. Because of the nature of the 
optical-fiber cable, M is electrically isolated from the 

ground of the FG. Therefore, 𝐺 𝑓   can be correctly 
evaluated while keeping M isolated from the earth owing 
to the EO-OE converters. 

4. Binary Classification of BCC Channel States 

We measured 𝐺 𝑓   by using the system shown in Fig. 6 
under various conditions. Examples of the measured 𝐺 𝑓  
values are shown in Fig. 7. The black curves indicate 𝐺 𝑓 . 
Other colored curves show 𝐺 𝑓  , and 𝑑  represents the 
distance between Person 1 and the M-TX attached to Person 
2. We observe that 𝐺 𝑓  is smooth and 𝐺 𝑓  undulates 
significantly. It is easy to correctly classify 𝐺 𝑓   into 
𝐺 𝑓   or 𝐺 𝑓   as long as these general features are 
reflected in 𝐺 𝑓 . Figure 8 shows 𝐺 𝑓  values measured 
under various conditions. Although most of 𝐺 𝑓   and 
𝐺 𝑓  exhibit these general features, some do not seem to 
possess them. Therefore, it is not always easy to correctly 
classify 𝐺 𝑓  into 𝐺 𝑓  or 𝐺 𝑓 . 

It is well-known that machine learning can effectively 
solve classification problems. Therefore, we applied 
machine learning to predict the ordinary/extraordinary states 
based on the measured 𝐺 𝑓  . In this study, we used 
Mathematica 12 as the machine-learning tool. Various 
learning algorithms can be used with this tool. As shown in 
Fig. 8, the numbers of measured 𝐺 𝑓   and 𝐺 𝑓  
samples are 48 and 64, respectively. We used half of the 
measured data for the training. The other half was used to 
validate the prediction accuracy of the machine-learning 
method. To effectively increase the number of samples, a 2-
fold cross-validation was performed. 

The prediction accuracies obtained by using several 
machine-learning algorithms are summarized in Table 1. 
The results obtained in this study are listed in the “Uplink” 
column. For reference, results reported in [18] are shown in 
the “Downlink” column. The maximum prediction accuracy 
is 96% with logistic regression and neural network 
algorithms. However, several other algorithms exhibit a 
prediction accuracy of approximately 90%. This indicates 
that the prediction accuracy does not depend significantly on 
the learning algorithms. These results show the effectiveness 
of our proposed method for detecting an undesirable person. 

5. Conclusion 

We proposed a method for detecting the existence of an 
undesirable person in BCC uplink channels. The key 
concept of our method is the detection of an undesirable 
person based on the information contained in the signals 
received by fixed devices. The detection of an undesirable 
person is equivalent to binary classification problems: 
classifying the measured 𝐺 𝑓   into 𝐺 𝑓   or 𝐺 𝑓  . An 
important feature of BCC systems is that mobile devices are 
electrically isolated from the earth in real situations because 
they are powered by batteries. We emphasized that EO-OE 
converters play an important role in correctly evaluating 
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Fig. 7  Examples of BCC uplink channel gain measured under ordinary 
and extraordinary states. 
 

 
Fig. 8  BCC uplink channel gain measured under various conditions. 

 
 

Table 1  Prediction accuracy obtained by using machine learning. 
 

 

 
𝐺 𝑓  because it facilitates the evaluation of systems while 
keeping the mobile devices isolated. As demonstrated in our 
study, photonic techniques are effective in measurements of 
not only microwave-frequency ranges but also lower-
frequency ranges. We applied machine learning for binary 
classification and achieved a prediction accuracy of 96% in 
BCC uplink channels. The experimental results showed the 
validity of our proposed method for establishing secure BCC 
systems. 
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Algorithm
Prediction Accuracy

Uplink (this study) Downlink [18]

Logistic regression 96% 94%

Neural network 96% 89%

Support vector machine 82% 89%

Decision tree 91% 86%

Nearest neighbors 93% 84%


