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Abstract—An unsplit-field and stretched coordinate (SC) 

based perfectly matched layer (PML) is presented for 
Weighted-Laguerre-based finite-difference time-domain (WLP-
FDTD) method. The proposed SC-PML is used to truncate 
plasma medium. A numerical example is included to 
demonstrate the performance of these proposed formulations.  

Index Terms —Weighted Laguerre polynomials (WLPs), 
finite difference time-domain (FDTD), Plasma. 

I. INTRODUCTION 

The finite-difference time-domain (FDTD) method has been 
widely used to simulate the wave propagation in dispersion 
medium since its easy implementation. However, the well-
known Courant-Friedrichs-Levy (CFL) stability condition 
constrains the application of conventional FDTD method for 
the simulation of structure with fine geometries. To 
overcome these limitations, unconditionally stable FDTD 
method has been developed, such as alternating direction 
implicit (ADI) FDTD [1], locally one dimensional (LOD) 
FDTD [2], WLP-FDTD [3] method. Among them, the WLP-
FDTD method not only removes the CFL stability restriction, 
but also avoids the numerical dispersion error of the ADI-
FDTD with the increase of the time-step [4].  

The perfectly matched layer, introduced by Berenger, has 
been widely used for truncating FDTD computational 
domains[5]. The original formulation is based on splitting 
field. From then on, different unsplit-field PML 
implementations have been presented for FDTD method, 
such as uniaxial PML (UPML) [6] and SC-PML [7, 8]. 
Among the various implementations of the PML, the SC-
PML has the advantage of simple implementation in the 
corners and edges of the PML regions and is independent of 
background medium. Recently, a split-field PML [9] based 
on Berenger’s original formulation was employed within the 
WLP-FDTD formulation and so as the UPML [10]. 

In this letter, a perfectly matched layer boundary condition 
based on the stretched coordinate is presented for WLP-
FDTD method. The proposed PML avoids field splitting and 
is easy to be implemented for dispersion medium. Then the 
SC-PML is used to truncate the plasma lattices. Numerical 
results show the effectiveness of the proposed PML 
algorithm. 

II. FORMULATION 

Using the stretched coordinate PML formulation and 
considering the kinetic equations for cold electron plasma, 

the field equations for a TEMz wave propagation in one-
dimensional plasma medium can be written as 

0

1
+

y x
e ex D

z

H E
en u J

S z t


 
  

 
  (1.a)

 

0

1 yx

z

HE

S z t



 
 

   (1.b)

 

ex
ex

u e
E vu

t m


  


   (1.c)

 

where en is the density of the electron, v  is the collision 

frequency, exu is the electron velocity, m is the electron mass, 

e is the electron charge, DJ is excitation source, zS is the 

coordinate-stretching variable defined as 
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where z  is the PML conductivity profile along the z-

direction. In this letter, the PML parameter are scaled 
following the expression [6]. 

Introducing the following auxiliary variables 
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and noting the j t    , (3) can be written in the time 

domain as 
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With reference to Chung [3], the equations (1), (4) and (5) 
are expanded using a entire-domain temporal basis function 
. For example, (4) can be expanded as 
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Eliminating basis function ( )p t by Garlerkin temporal 

testing procedure, we can get  
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where q is the order of the weighted Laguerre polynomials, 
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After some manipulation, the SC-PML update equation for 

xE  can be obtained as: 
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It is clear that the left hand side in (11) forms a tri-
diagonal matrix, which can be solved efficiently with the 

approach presented in [11]. Once xE  is obtained, (7)~(10) 

can be updated explicitly. 

III. NUMERICAL STUDY 

A one dimension numerical example is used to verify 
proposed PML absorber. The total WLP-FDTD domain 

contains 200 grids with each size 150z m  . Both ends of 

the computational domain are terminated with 15 grids PML. 

The plasma occupied 169-199 grid, with 19=1.0231 10en  m-3, 
10=2 10v  rad/s. The other grids are free space.  

The excitation source located at grid 100 is defined as a 
differential Gaussian pulse given by  

    2 2
0 0( ) expxJ t t t t t        (11) 

where 0 0.01t ns 0.05ns  . We chooses the order of the 

weighted Laguerre polynomials 300q  , and the timescale 

factor 112 10s   . The WLP-FDTD takes a time step of ∆t = 

2.5 ps, such that the CFL number is 5.The total time duration 

is 2.4fT ns . Fig. 1 illustrates the plasma reflection 

coefficient calculated by WLP-FDTD and analytical method. 
It can be seen that the result of the proposed algorithm agree 
with that of the analytical method very well. 

 
Fig. 1  Reflection coefficients calculated by WLP-FDTD and 

analytical method  

IV. CONCLUSION 

We presented an unsplit-field and stretched coordinate based 
perfectly matched layer for WLP-FDTD in plasma medium. 
Numerical results show the effectiveness of the proposed 
PML algorithm. In a similar manner, the formulation can be 
extended to two dimensions and other types of dispersive 
medium. 
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