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Abstract – This paper presents the asymptotic formulation to 

analyze the EM scattering from periodic array structure. The 
focus is to provide the interpretation mechanism for the wave 
propagation as previously performed by the conventional UTD. 
Numerical examinations will be presented to demonstrate the 
characteristics and accuracy of the solution. 

Index Terms — Periodic array structure, Asymptotic 
Analysis, EM scattering, Propagation mechanisms. 

I. INTRODUCTION 

In this paper we present the analysis of electromagnetic 
(EM) scattering from periodic array structures, such as 
selective surface (FSS) [1] and reflectarray/transmitarray 
antennas [2],[3]. In particular, we focus on creating an UTD-
type formulation [4],[5] such that the scattering mechanisms 
can be interpreted by the diffraction mechanisms, which 
allows one to better understand the physical characteristics.  

In the investigation, the scattering fields are first assumed 
to be from the radiation of equivalent currents, and result in a 
summation of radiations from the array elements. This 
summation is then transferred into Floquet modes via the 
utilization of Poisson sum formula, where each Floquet mode 
is a form of radiation integral. The asymptotic techniques are 
then applied to decompose the integrations into the 
components of direct reflections from a corresponding 
infinite array and diffraction effects due to the truncations. 
Physical interpretation is then performed based on these 
reflected and diffracted field components. Numerical 
examples will be presented to demonstrate the characteristics.  

II. PROBLEM DESCRIPTION 

Fig. 1 illustrates the EM scattering problem from a periodic 
array structure, where the array element is assumed to be 
within the unit cell on the figure. The structure within the unit 
cell may be different, and allows one to treat the scattering 
problems of reflectarray and transmitarray antennas. It is 
assumed that the EM mutual coupling within the unit cell can 
be analyzed by low-frequency numerical techniques over an 
infinite array of same elements, and results in the equivalent 
currents (both magnetic and electric currents) on the 
boundary of this array with free space, where the incident 

field is assumed to be plane wave approximated by the local 
wave phenomena over the selected element.  

Thus for a cylindrical wave illumination in 2-D scattering 
problems, the localized equivalent currents can be used as an 
alternative to equivalently radiate the scattering fields. The 
fields can be expressed  
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Fig. 1: Illustration of scattering from periodic array structures. 

 
This formulation builds up the fundamentals of the 

scattering from a semi-infinite array, which allows one to 
consider the truncation effects. The asymptotic technique 
analysis based on the Floquet mode decomposition will be 
able to provide the scattering mechanism. 

III. THE ASYMPTOTIC ANALYSIS OF THE FLOQUENT MODES 

After applying the Poisson sum formula over (1) will produce 
an infinite series of Floquet modes, where each mode is a 
form of radiation integral. The asymptotic technique is 
applied to formulate the solution in the following form: 

)()())(Re()()( kaFuxxUuu p
endse

p
dir

p
s   ,    (2) 

)(
8

)( ,,
0 n

xf
n

xrn

N

n nn

jjkjk
x

s kkG
eee

kj

dI
u

c
nnn









 














WE2B_04WE2B_04WE2B_04WE2B_04 Proceedings of ISAP 2014, Kaohsiung, Taiwan, Dec. 2-5, 2014

63



where ( )U   is the Heaviside step function and ( )F   [4],[5] is 

the UTD Fresnel transition function to assure the uniform 
field distribution when the field point is across the shadow 

boundary of incident/reflected fields. In (2), )(p
diru  is the 

asymptotic solution of radiation when the size of array is 

extended to infinity while )(p
endu  accounts for the effect of 

truncation. Both components arise from a radiation point, sx  

on the array aperture, and a diffraction point, ex  on the edge, 

respectively. This formulation remains valid as the radiation 
point is close to the diffraction point, i.e. s ex x .  

A. Direct Scattering Fields of pth Floquet Mode 

)(p
diru  in (2) is the scattering from an infinite, non-

truncated array with ex . The asymptotic solution is 

given by 
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where the sub-/superscript “s” indicates that all parameters 
are found at a saddle point, si xx  , on the array aperture. 

One may compare (2) with (1) to see the parameter changes. 

Here )( p
sfu   represents the incident field at the saddle point, 

),( i
x

s
x kk  as well as s

zk represents the scattering and incident 

directions in this mode. In (2), 2 /p xp d   is resulted 

from Floquet mode. The ray caustic distance c  is obtained 

by the equivalent focus point, which will determine the 
selection of sign in (2) depending on whether it is focused in 
the real or virtual space.  

B. The Truncation Effects 

The general truncation diffraction effects in (2), )(p
endu , is 

represented by the following form: 
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where the sub-/superscript “e” indicates that all parameters 

are computed at the truncation point at ex  with ),( ie
p

e zx . 

Similar to the definitions of parameters in (2) to interpret 

),( ie
x

e
x kk  and other terms, it is recognized that the term inside 

the bracket is the diffraction coefficient for this truncation. 
The form of this formulation is similar to that of conventional 
UTD formulation. One is thus able to interpret the diffracted 
ray at the truncation.  

IV. NUMERICAL EXAMPLE 

One considers the scattering problem of reflectarray with the 
impression phases assumed to produce a near-field focused 
scattering field at )50,0(  . The fields are observed at 

100z . Fig. 2 shows the patterns compared with the 
reference solutions obtained by element-by-element 
summation. It is observed that the near-field focus reflect 
array results in a narrower main beam in the near zone. The 
comparison with the reference is observed to be very well. 

 
Fig. 2: Numerical examples to validate the accuracy of the developed 
asymptotic solutions for the reflectarray problems with elements phased to 
focus scattering fields in the near-zone.  

V. CONCLUSION 

The solutions presented in this paper are effectively 
capable of well interpreting the scattering mechanisms in the 
design of FSS, and reflectarray/transmitarray problems in 
terms of UTD mechanism. The future work will extend the 
concept to treat the 3-D scattering problem.  
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