
OSS Data Integration using Virtual Database

Naoki Take, Manabu Nishio, and Hikaru Seshake
1

NTT Network Service Systems Laboratories

3-9-11, Midori-Cho, Musashino-Shi,

Tokyo, 180-8585 Japan

E-mail:{take.naoki, nishio.manabu, seshake.hikaru
1
}@lab.ntt.co.jp

Abstract—Due to network scale expansion and shortening of

service lifecycles in recent years, operation support systems

(OSSs) have been developed and deployed individually in a short

time. However, such OSSs are isolated from each other, which

makes it difficult to share data among them. To solve this

problem, we propose an OSS data integration approach using a

virtual database and discuss its feasibility with respect to

functionality and performance. In terms of functionality, we

discuss the feasibility of our approach without functions that use

event detections. In terms of performance, we argue that

overhead will not be a problem in reading and writing data with
our approach.

Keywords—operation support systems; data integration; virtual

database;

I. INTRODUCTION

Integration of disparate data that have distributed,
autonomous, and heterogeneous data sources, often referred to
as data integration [1] or information integration [2], is a
crucial topic both commercially and academically. The
heterogeneity and dispersiveness of data sources are due to
various reasons depending on the situation. One example is a
large-scale scientific project where data sets are being
produced independently by multiple researchers [1]. Another
example is large companies or government agencies that have
developed many information systems independently to satisfy
the needs of local organizational units [2]. These systems were
designed, built, and optimized to solve local needs, so there is
little regard for using data throughout the entire enterprise.

There is a similar problem regarding network operation.
Due to the rapid expansion of network size and the short
lifecycles of services over a network in recent years, operation
support systems (OSSs) have been developed and deployed in
a short time, resulting in the isolation of each OSS, which
makes it difficult to share information among those systems.

As a solution to the integration problems mentioned above,
an industry called Enterprise Information Integration (EII) has
been growing since the beginning of late 1990‟s [1]. EII
products provide tools for integrating data from multiple data
sources without first needing to load all the data into a central
storage.

EII products are based on a system called the Federated
Database System (FDBS) [3]. An FDBS is “a collection of
cooperating database systems that are autonomous and possibly
heterogeneous” [3], and is used to integrate multiple distributed

databases. In an FDBS, a global view is created over existing
databases so that users can treat them as a single database [2].
An FDBS, or simply a federated database, is often called a
“virtual database (VDB)” (e.g. [4]), so we use this term in this
paper.

We discuss the feasibility of applying data integration
based on the VDB technique to OSSs. When considering the
application of integration to OSSs, we assume that two
application scopes in data integration. The most common one
integrates only data located in databases, files, and so on. The
other is more advanced and integrates all the data including
network elements (NEs) as data sources. We suggest the latter
scope of integration because it has a positive effect on OSS
development, as discussed in Section 2.

This paper is organized as follows. Section 2 explains the
reason we propose integration including NEs. Section 3
describes related approaches and compares them with our
proposed approach. Sections 4 and 5 explain and discuss the
results of feasibility evaluations with respect to functionality
and performance, respectively.

II. SCOPE OF INTEGRATION

When considering the application of data integration to
OSSs, we have to consider the most important feature of OSSs;
that there are NEs in the system. In this section, we focus on
this feature to discuss the application scope in data integration.

A. Scopes of Integration

When we model an OSS application as having its own
database and managed NEs as data sources, the current isolated
systems are represented as in Fig. 1(a). When applying data
integration, we assume that there are two cases according to the
scopes of integration. One case integrates only data located in
databases (Fig. 1(b)). The other integrates all the data including
NEs when assuming NEs as data sources (Fig. 1(c)).

B. Proposal

We propose the latter scope of integration because we can
integrate the interfaces to access data. Many OSSs today are
designed to have their own databases and store information
obtained from the NEs they manage. This means OSSs store
the copies of the original data. We often conduct operations,
such as referring, updating, appending, and deleting, on those
data. On the other hand, we sometimes conduct the same

1 Present affiliation: NTT Comware Corporation

Address: seshake.hikaru@nttcom.co.jp

gabacho
タイプライターテキスト
Copyright 2013 IEICE

NEDB

AP AP

NE DB

NE
Integrated

Data

AP AP

NE

NE

Integrated Data

AP AP

NEDB DB DB DB

(a) Current isolated systems

(b) Integration of data (c) Integration including NEs

AP : OSS Application

DB : Database

NE
: Network Element

Fig. 1. Scopes of data integration

operations directly on the NEs. In the former case, SQL is
widely used as an interface to access data, while an interface,
such as SNMP, is widely used in the latter case.

Both cases have different operational targets but ultimately
result in the same operation. Therefore, we argue that it would
be effective to integrate the interfaces to access data to enable
easier development of OSSs.

Of course, there are operations that do not seem to be
targeted at the copied data such as command execution for NEs
and event detection in NEs. We discuss this problem in Section
4.

III. RELATED TECHNIQUES

In this section, we describe related techniques and compare
them with our proposed approach. We state this topic from two
viewpoints: integration approaches and interfaces. The
integration approaches viewpoint focuses discussion on
methods of data integration, and the interfaces viewpoint
focuses discussion on network operation and compares
interfaces to access NEs.

A. Integration Approaches

There are two main approaches in data integration: physical
(materialized) integration and virtual integration (e.g. [5]). In
this section, we describe the features of each approach and
discuss our proposed integration approach.

1) Physical Integration

a) Manual Integration

There have been many situations that require integration,
such as a merger of multiple banks and related database
integrations. In these situations, the data schema is often re-
designed, a new database is reconstructed, and data are
manually imported into the database. This is a primitive but the
most fundamental way to integrate data. However, it is difficult
to do and requires much time and money. In addition, it
requires strong governance in the related organizations.

b) Data Warehousing

A data warehouse is a “subject-oriented, integrated, time-
varying, non-volatile collection of data that is used primarily in
organizational decision making” [6]. A data warehouse collects
and stores data from multiple, distributed, and heterogeneous
operational databases, organizes the data so they are consistent
and easy to read, and keeps „old‟ data for historical analysis so
that users can conduct analysis [7]. In this approach, data must
be first loaded into large storage using extract, transform, and
load (ETL) tools, so we need additional facility investment. In
addition, since the purpose of integration is only analysis, there
is no support for data updating.

2) Virtual Integration
The other approach is virtual integration, which does not

use additional central storage, and integrates the data virtually.
A VDB is one of the most common technologies for this
approach. We describe the architecture that enables the
implementation of a VDB and related technology.

a) Virtual Database

A typical architecture of a VDB is shown in Fig. 2
(modified from [8]). It consists of a series of query processors,
such as the query reformulation, query optimization, and query
execution, and a set of wrappers. There are two types of data
schemata in a VDB. One is the exported source schema, which
is directly imported from a data source into the VDB. The other
is the mediated schema, to which users can detect and send
queries. The query processors reform a query in the mediated
schema to that in the source schema, optimize the distributed
query execution, and execute the optimized plan. A wrapper is
a program that is specific to every data source whose task is to
translate the queries in the source schema into actual queries in
the data sources. The wrapper also translates the answers from
the data sources into a form that can be further processed by
the query processors.

b) SQL/MED

SQL/MED (management of external data) [9] is a SQL
standard defined by ISO/IEC 9075-9:2008 that determines how
a database management system can integrate data stored
outside the database, and it is usually treated as a technique for
implementing a VDB. External data can be data not only in
relational databases (RDBs) but also data in NoSQL databases,
files, and data managed by web services. PostgreSQL, a widely
used open source database management system (DBMS), has
supported this standard since version 9.1, so we can use it as an
implementation of VDB. However, it has no support for
updating queries at this time [10], so we do not consider this
standard in this paper.

3) Proposed Approach
As described above, the physical integration approach has a
problem of high cost since it requires expensive additional
central storage or manual data integration. Compared to this,
the virtual integration approach does not require additional
storage and is relatively cost-effective. For this reason, we
selected the virtual integration approach as our integration
approach. On the other hand, the physical integration approach
is superior with respect to performance since we can directly
access the physical data in the local repository. In this paper,
we verify this disadvantage in performance of the virtual

gabacho
タイプライターテキスト
Copyright 2013 IEICE

Query Reformulation

Query Optimization

Query Execution Engine

Wrapper Wrapper

Query in mediated schema

Query in source schema

Query in exported source schema

Query in union of
exported source schemas

Distributed query execution plan

Fig. 2. Typical architecture of VDB (modified from [8])

integration approach in Section 5.

B. Interfaces

In Section 2, we described that the main advantage of
integration including NEs is that we can integrate the interfaces
to access all the data handled by OSSs. Basically, since a VDB
is based on the relational DBMS (RDBMS), the main interface
to the data is SQL, which is commonly used as the language
for handling data in relational databases. SQL is the main
interface to the data because it is basically based on RDB
systems. We also have to take into account that there are
several techniques for achieving interface integration, other
than with a VDB, such as SNMP and Web services. We
compared these techniques.

1) SNMP
SNMP is widely used as an interface to NEs and refers to

the management information base (MIB) they have. The MIB
is based on the original idea of the OSI Network Management
Model specified by ISO 7498-4 / ITU-T X.700 [11]. This
standard does not define the implementation of the MIB but
defines only the logical structure of information (Fig. 3), and is
often referred to as a VDB [13].

As described above, the original concepts of management
are similar between SNMP and a VDB. In fact, there are
standards, such as RDBMS-MIB [14], that enable integrated
access to RDBMS.

One important difference between them is the style of
programming. In SNMP, we basically need to combine the
information obtained individually by writing codes. Compared
to this, SQL can integrate information by itself since it is
originally a language that combines multiple tables and creates
a new information view. This means that the application codes
will be relatively simple in the VDB approach since developers
only have to write SQL declaratively.

Another difference is the interfaces they support. SNMP
supports data reading (SNMP get), data writing/updating
(SNMP set), and event notification/detection (SNMP trap)
while SQL supports data reading (SELECT) and data
writing/updating (UPDATE, INSERT, DELETE). Event
notification/detection is an important role in managing NEs, so

MIS-User

(manager role)

MIS-User

(agent role)

Performing
management
operations

Notifications
emitted

MIB

Managed
objects

Management
operations

Notifications

Communicating

Managed open system

Fig. 3. Schematic of MIB (modified from [12])

the lack of this role would be a problem with the VDB
approach. We discuss this issue in Section 4.

2) Web Services
Web services are also used as the interface for NEs such as

TMF MTOSI [15]. Assuming NEs and databases are web
services, we can also integrate their interfaces.

Similar to the discussion of SNMP in the previous section,
the main difference between the web service approach and the
VDB approach is the style of programming. In the web service
approach, similar to the SNMP approach, we need to combine
specific information by writing codes. Therefore, there is the
same advantages and disadvantages of SQL compared with
web services as in the discussion of SNMP.

3) Proposed Approach
As described in the SNMP section, SQL enables easier

OSS development, especially in combining different data,
because developers do not need to write many codes. Of course,
there is a problem in that the VDB approach seems to be
unfamiliar and complicated for developers who mainly develop
applications and rarely write SQL. This problem can be solved
by clearly distinguishing developers‟ roles into “application
developer” and “database developer”, and delegating
development using SQL to a “database developer”. We believe
that this encourages the sharing of functions and eases the
development as a whole. Therefore, we argue that the VDB
approach is the best way to integrate OSS data and SQL is the
best interface for it.

IV. FEASIBILITY EVALUATION (FUNCTIONAL)

In the previous section, we proposed our integration
approach, which includes NEs as the data sources and stated
that there are operations that seem to be difficult to express as
data operations, such as command or test execution against
NEs and event detection in NEs. We evaluated the feasibilities
of those operations through a VDB.

A. Command Execution

Functions that “execute” something seem to be a problem
because there is no concept of execution in the data domain.
However, we argue that some “execute” functions are naturally
translated into data operations and can be executed through the
VDB.

We give an example of an execution of a “ping” command
(Fig. 4). First, a client application issues the following query:

gabacho
タイプライターテキスト
Copyright 2013 IEICE

Application

SELECT reachable FROM pingTable
WHERE host=‘192.168.xxx.xxx’;

host reachable

192.168.xxx.xxx true

ping response

pingTable

NE

Wrapper

Fig. 4. Example of executing “ping” through VDB

SELECT reachable

 FROM pingTable

 WHERE host = „192.168.xxx.xxx‟;

where “pingTable” is a table in the VDB that has “host” and
“reachable” columns. The information of the query is then sent
to the wrapper for “ping”, which we created, and executes the
ping command to “192.168.xxx.xxx”. This argument of the
command was originally from the WHERE clause in the first
query. When the response comes back from the host, the
wrapper translates it into the form of a table in the VDB. The
client can now determine whether it has reachability to a host
“192.168.xxx.xxx” as an answer to the query above.

The “ping” command can be executed through the VDB
since the wrapper can be written to translate anything, and the
arguments that are necessary for the command execution can
be provided as a WHERE clause. What is important here is that
the SQL expression of that command is easy to understand.
This is thought due to the fact that the client application‟s goal
is to determine the information of reachability, not execute any
commands.

Theoretically, this is not only the case of “ping” but also of
any other operation which is called the “request-reply” process.
Therefore, the problem is converted into a semantic one, such
as “Which is suitable for this command, SELECT, UPDATE,
INSERT, or DELETE?”.

B. Event Detection

Basically, functions that use event detection, such as fault
monitoring and congestion control, are difficult to implement
using databases because they do not allow autonomous change
of data; in other words, they do not have interfaces to allow
queries from the data side. We discuss methods for event
detection through a VDB.

One of the methods is based on the idea that a message
from an NE is a response to a SELECT query the client
application issued in advance. Issuing a SELECT query in
advance allows the receiver application of an NE message to
find the event that is occurring.

However, the implementation of this method may be
complicated and many functions in the wrapper are required
such as receiving the notification, suspending the SELECT
query, and cueing the query. In addition, applications require
another thread while the other thread waits for an event so
other operations will not be blocked. Furthermore, this

architecture has duplicate event receiving parts in the wrapper
and application.

As described above, event detection seems difficult with
the current functions of a VDB. This indicates that a function
that enables event detection, such as transaction-monitor
products, is required for our approach.

V. FEASIBILITY EVALUATION (PERFORMANCE)

As described in Section 3, the virtual integration approach
results in processing overhead compared with the physical
integration approach. We conducted a feasibility evaluation
from the viewpoint of performance. We first conducted a basic
experiment to examine the general behavior of the VDB. We
then investigated the feasibility of our approach in an actual
situation using the data from the basic experiment.

A. Experimental Methodology and Environment

1) Environment and Methodology
Using an open source product called Teiid [16] as an

implementation of a VDB, we measured the turnaround time of
each data operation. Teiid is provided as an application on the
JBoss application server (JBoss AS) together with Teiid
Designer, a development environment of VDBs, running on
Eclipse. The software configuration of this experiment and the
hardware specifications are shown in Fig. 5. In this
configuration, the VDB server, “data source” physical database
server (PostgreSQL), and client applications are all in the same
physical machine. To access the VDB from the client
application, we used “Teiid JDBC” and to access PostgreSQL
we used JDBC for PostgreSQL. The fetch size of JDBC
(PostgreSQL, Teiid) was configured to 10,000, and the auto
commit mode was set to false.

We used a physical database and files as data sources in
this evaluation since they are considered to be the most
common data stores in network operation. We compared the
turnaround time of accessing the data sources between 1)
through the VDB and 2) directly and evaluated that difference
(overhead).

2) Data Specifications
We used tables that had 1000, 10,000, 100,000, 1,000,000, and
10,000,000 rows in the “data source” database (physical
database). The data specifications, simply simulating the traffic
or resource usage logs, are shown in Fig. 6. This is an example
of a data size of 10,000,000. Other data sizes were created by
adjusting the maximum number of “target_id” columns.
Specifying “mtime” and “target_id” can specify one record.
We did not set any primary keys. As a VDB schema, we used
the same schema as table “traffic” in the physical database as a
source model and did not use the view model (In Teiid, the
mediated schema is called “view model”, and the exported
source schema is called “source model”). We used the same
data schema as in the physical database as for the file, but in
CSV format. We used only one file, not multiple files, for each
data size.

3) Data Operation
We conducted an all-records search (“SELECT * FROM

traffic”) and one-record search (“SELECT * FROM traffic

gabacho
タイプライターテキスト
Copyright 2013 IEICE

CentOS 5.5

Java1.6

JBoss AS 5.1

Teiid 7.7Test
Application Eclipse Indigo

Teiid Designer
7.8.0

CPU: Intel(R) Xeon(R) CPU E5507 2.27GHz (4 cores) ×2
Memory: 32GB

PostgreSQL
8.4Java1.6 Java1.6

Fig. 5. Software configuration and hardware specifications for experiment

Table: traffic
View Model: None

Source Model:

Virtual DB

mtime(INT) target_id(INT) attr1(INT) attr2(INT) ・・・ attr8(INT)

0 0 35 21 ・・・

1 86 55 ・・・

: : :

Client Application

SELECT * FROM traffic;
SELECT * FROM traffic WHERE mtime = 12 AND target_id = 1;
INSERT INTO traffic VALUES (...)

Physical DB
mtime(INT) target_id(INT) attr1(INT) attr2(INT) ・・・ attr8(INT)

0 0 35 21 ・・・

1 86 55 ・・・

: : :

399999

1 0

:

:

24 0

:

399999

Random(100)

Fig. 6. Data specifications

WHERE mtime = 12 AND target_id = 1”) as reading

operations. We conducted evaluations of INSERT queries

(“INSERT INTO traffic VALUES(…)”) as writing operations.

It is believed that INSERT takes too much time in actual

situations, so we performed another operation that directly
writes data to a file and compared the result.

B. Results

1) Reading
The measurement results for data reading are shown in Fig.

7. Fig. 7(a) shows the sum of the execution and the fetching
times for all-records search and Fig. 7(b) shows the execution
time for one-record search. The execution time was measured
as the turnaround time of JDBC command “executeQuery”,
and the fetching time was measured as the turnaround time of
the entire loop, each of which had one “next” command (Fig.
8). The solid line shows the results when we use a file as a data
source through a VDB, and the dotted line shows the same but
the data source is a database. The dashed line shows the results
when we directly access a physical database. While the
overhead was fixed under 100 ms in the one-record search, it
increased as the number of records in the physical database
increased in the all-records search (note that the vertical axis is
log-scale). This result indicates that the VDB executes and

1

10

100

1000

10000

100000

Ti
m

e
(m

s)

(a) Execution Time + Fetching Time (all records)

1

10

100

1000

10000

100000

Ti
m

e
(m

s)
Number of Records/Rows

(b) Execution Time (1 record)

VDB(DS: File) VDB(DS: DB) Direct(DB)
DS: Data Source

Fig. 7. (a) Execution and fetching times for all-records search and (b)

execution times for one-record search

Execute

Fetch

executeQuery();

while {
next();

}

createStatement();Createcreates query statement

executes query

fetches result
(one line at a time)

JDBC commandDescription Process Flow

Execution Time

Fetching Time

Fig. 8. Definition of execution and fetching times

fetches all the records first in the source database, then
conducts some translations where the execution time is
proportional to the number of records.

2) Writing
Fig. 9 shows the execution time when we write the number

of rows shown in the horizontal axis. The solid line and the
dotted line indicate the results of INSERTs through a VDB and
directly, respectively. The dashed line indicates the results
when we write data in the CSV file format directly, not through
the VDB. Naturally, writing data in the file format is much
faster (more than 100 times faster) than into databases by
INSERTs, even not through VDB.

C. Discussion

1) Reading
One of the largest amounts of data that OSSs handle is

usage data such as resource usage logs. We investigated the

gabacho
タイプライターテキスト
Copyright 2013 IEICE

1

10

100

1000

10000

100000

1000000

10000000

Ti
m

e
(m

s)

Number of Records/Rows

Direct(DB) VDB(DS: DB) Direct(File)
DS: Data Source

Fig. 9. Turnaround time for data writing

function that displays usage data to an operator as an actual
situation. We assumed that the number of managed devices
was 50,000 and an OSS was receiving data from these devices
every 5 minutes, resulting in about 14,000,000 records of data
created per day.

Fig. 7 indicates that while there was fixed overhead in the
one-record search, it increased as the number of rows increased
in the all-records search. As a result, it took more than 1 minute
for 10,000,000 records, which is not so different from the data
size we estimated from the assumption above.

Taking more than 1 minute to display usage data would be
frustrating to an operator, but there seems to be no actual
situation for an operator to display such a large amount of data
at once. The valid number of records to display at once is about
500 at most. We confirmed that the execution time for this
range of data size is less than 2 seconds in another experiment
(the issued query is “SELECT * FROM traffic WHERE
mtime=12 AND id < n”, where n is the number of expected
answer records), and this seems to be acceptable.

As described above, we discussed the feasibility of the
functions that read and display data to operators using a VDB.

2) Writing
Similar to the assumption discussed in the previous section,

we investigated a function that stores usage data in a data
source. According to Fig. 9, the turnaround time for INSERTs
was about 40 ms per record when we used the VDB. This is
derived from a simple calculation of taking more than 100
hours to store 10,000,000 records, and we could not finish the
operation in one day. Not surprisingly, writing data into files is
more than 100 times faster. According to Fig. 7, however,
reading one record from a large file that has 10,000,000 rows is
more than 20 times slower compared to reading data from
databases and takes about 45 seconds. Therefore, we should
use files when we write large data and should use databases
when we read data from a large data set.

There are several methods for implementing this. One is
importing files into databases using the “import” command
(“COPY FROM” in PostgreSQL). We also measured the file
importing time into a database, and obtained results of about 5
seconds for 1,000,000 rows and 54 seconds for 10,000,000
rows, which is fast enough for actual use. Another method is

using external tools such as rsyslog [17], which is an advanced
version of syslog and can store syslog messages into databases.

VI. CONCLUSION

We proposed an OSS data integration approach that
includes NEs as the data sources using virtual database
technique and discussed its feasibility. From the viewpoint of
functionality, functions such as command execution are
possible by wrappers that translate the queries for the mediated
schema into any operation, while functions such as event
detection are difficult in a current database manner. From the
viewpoint of performance, we explained feasibility in reading
data, especially when displaying data to operators. As a data
source, we also explained that files are suitable for writing
large data while databases are suitable for reading.

REFERENCES

[1] A. Halevy, A. Rajaraman, and J. Ordille. “Data integration: The teenage
years,” In VLDB, pp. 9-16, 2006.

[2] R. E. Giachetti, “A framework to review the information integration of
the enterprise,” International Journal of Production Research, vol. 42, no.

6, pp. 1147-1166, 2004.

[3] A. P. Sheth and J. A. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM

Computing Surveys, vol. 22, no. 3, pp. 183-236, 1990.

[4] J. Berlin and A. Motro, “Autoplex: Automated discovery of content for
virtual databases,” In Cooperative Information Systems, Springer Berlin

Heidelberg, pp. 108-122, 2001.

[5] R. Hull and G. Zhou, “A framework for supporting data integration
using the materialized and virtual approaches,” SIGMOD, pp.481-492,

1996.

[6] W. H. Inmon, Building the Data Warehouse, John Wiley, 1992.

[7] S. Kelly, Data warehousing in action, John Wiley & Sons, 1997.

[8] A. Y. Levy, “The information manifold approach to data integration,”

IEEE Intelligent Systems, 13, 1998.

[9] ISO/IEC 9075-9:2008：“Information technology ─Database languages
─ SQL ─ Part 9: Management of External Data （ SQL/MED ） ,”

International Organization for Standardization, 2008.

[10] “CREATE FOREIGN DATA WRAPPER”, PostgreSQL 9.2.4
Documentation, http://www.postgresql.org/docs/9.2/static/sql-

createforeigndatawrapper.html, accessed 2013-05-14.

[11] ITU-T Recommendation X.700, “Management Framework Definition
for Open Systems Interconnection(OSI) for ITU-T Applications.”, 1992.

[12] ITU-T Recommendation X.701, “Information technology - Open

Systems Interconnection- Systems Management Overview.”, 1992.

[13] J. Sathyan, Fundamentals of EMS, NMS and OSS/BSS, Auerbach
Publications, 2010.

[14] D. Brower, B. Purvy, A. Daniel, M. Sinykin, and J. Smith, RFC 1697,
“Relational Database Management System (RDBMS) Management

Information Base (MIB) using SMIv2,” IETF, August 1994.

[15] “Standardized Interfaces MTOSI”, Telemanagement Forum,
http://www.tmforum.org/MTOSI/2319/home.html, accessed 2013-05-14.

[16] “Teiid - JBoss Community”, http://www.jboss.org/teiid/, accessed 2013-

05-14.

[17] “The enhanced syslogd for Linux and Unix rsyslog”,
http://www.rsyslog.com/, accessed 2013-05-14.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

