
Implementation of a Novel Management
Development Platform for Virtual Networks

Wenyu Shen, Kenji Minato, Yukio Tsukishima, Katsuhiro Shimano
NTT Network Innovation Laboratories

1-1 Hikari-no-oka, Yokosuka, Kanagawa 239-0847 Japan
wenyu.shen@lab.ntt.co.jp

Abstract—Virtual networks, although regarded as a candidate
for future networks, still suffer from a complex management
plane. A hierarchical role model was proposed that represents
different forms of network virtualization in a simple and unified
way. As an application of the role model, this paper implements a
novel management development platform for virtual networks.
By using the proposed platform, a developer can develop
modularized management systems of virtual networks through
simply writing definition files. As a result, the platform has the
potential to reduce greatly the development cost. Finally, a
prototype system is constructed to validate the feasibility.
Although this research is still ongoing, we believe that it can be a
catalyst for further deployment of network virtualization
technology.

Keywords—network virtualization; network management
system; OSGi; modularization

I. INTRODUCTION
Network virtualization technology has been regarded as a

candidate solution for future networks that satisfies the carrier
demand for rapid deployment of new network services and
infrastructure technologies with lower capital expenditure
(CAPEX) and operating expense (OPEX) [1-4]. However,
due to the dynamism and polymorphism of virtual networks,
their management systems become extremely complex. In fact,
the data plane is complicated by the dynamism of virtual
networks. Objects being managed change on the fly with the
generation and deletion of virtual networks. Furthermore,
different organizations still utilize different network
virtualization definitions resulting in a mass of managed
objects in different forms. As a result, it is still expensive to
develop such a system using the traditional development
approach.

Fortunately, a hierarchical network model called the Role
Model (RM) was proposed that is able to represent different
forms of network virtualization in a simple and unified way
[5]. The theory behind the RM is that the essence of network
virtualization is simply the process of defining a network view
of a specific abstraction level. Moreover, a new network view
is generated from an existing network view or physical
networks, and this process is iterated in order to generate more
network views [5].

Based on the consistency and hierarchical feature of the
RM, we hypothesize that it is possible to generate a new

management system for virtual networks by writing simple
and structured definition files to some extent, instead of the
traditional development approach, which is based entirely on a
source code. In this way, the development cost is expected to
be reduced greatly. In order to prove this, we implement a
novel management development platform for virtual networks
based on OSGi [6], the features of which are summarized
below.

� The development platform supports dynamic
generation and customization of modularized
management systems with the changes of the managed
virtual networks.

� The framework of a management system such as the
module interfaces and interaction behaviors between
different modules can be generated by writing a role
definition file (RoDF), the structure of which strictly
applies to the RM.

� As an essential part of a management system, event
processing functions such as the function to prevent
mass event cascades across different modules can be
generated by writing a Rule Definition File (RuDF). To
achieve this, we implement a general event processor
by extending the OSGi Event Admin Service (EAS) [6].

The rest of the paper is organized as follows. Section 2
discusses the hierarchical role model, which is the basis of this
implementation. Section 3 describes the implementation
details of the proposed development platform including the
whole structure and the related definition files, i.e., RoDF and
RuDF. In order to validate the implementation, we utilize it to
assist in the development of a management system for a next
generation mobile service based on OpenFlow [7]. The details
are given in Section 4. Finally, Section 5 concludes the paper
and describes some open issues.

II. HIERARCHICAL ROLE MODEL

A. Review of Concept
This section briefly reviews the RM, which forms the basis

of the proposed management development platform. The
design details of the RM can be found in [5]. When people
describe the concept of “network virtualization,” actually a
specific network view is defined. Different forms of network
virtualization differ only in the abstraction level of the

gabacho
タイプライターテキスト
Copyright 2013 IEICE

network views. We note here that different network views
have similar generation processes, a new network view can be
generated from an existing network view or physical networks,
and this process is iterated yielding more network views. As a
result, the combination of these generated network views
forms a hierarchical structure. Inspired by the hierarchical
characteristics of network virtualization, the RM was proposed,
which is able to represent different forms of network
virtualization in a simple and unified way [5].

As the name suggests, the core concept behind this model
is a role that reflects a specific network view. In this model, as
illustrated in Fig. 1, installing an operating system (OS) in
Level 2, virtual OSs in Level 3, and programs in Level 4 on
common hardware generates a primitive role, the most basic
component, i.e., a specific network node performing certain
functions, such as an IP router or an Ethernet switch. Starting
from the primitive roles, Fig. 2 shows that new roles are
generated iteratively through a series of actions: role
assignment (X1), role partitioning (X2), and role collaboration

(X3). This yields higher roles such as network roles, path roles
and session roles, which are necessary to describe virtual
networks. In this way, all forms of network virtualization or
abstraction can be represented using roles, which are
generated from roles in a lower level and this cycle can be
traced back to the roles initially assigned to hardware. As a
result, as long as the relationships between physical entities
and the initially assigned roles can be managed, other roles
can be represented independently on the physical entities in
the management plane.

B. Mapping of ITU-T Network Virtualization Model to the
Role Model

(a) Mapping of physical resources

(b) Mapping of virtual resources

(c) Mapping of virtual networks

Fig. 3. Mapping of the network virtualization model defined in ITU-T
Y.3011 to the RM.

Fig. 1. Primitive roles and their generation method.

Fig. 2. Iterative generation of new roles.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

Fig. 3 illustrates a mapping between the virtualization
model defined in ITU-T Y.3011 [2] and the RM. For the
mapping of physical resources defined in Y.3011, network
nodes with OSs installed are first assigned roles such as router
roles, switch roles, and host roles, after which these roles
collaborate with each other generating a role in the physical
network. A mapping of virtual resources in Y.3011 to the RM
is illustrated in Fig. 3(b). In Level 7, multiple physical
networks in Level 6 are positioned as basic roles. In Y.3011, it
states that “physical resources are partitioned and abstracted as
virtual resources,” which can be mapped to role partition and
role collaboration in the RM [2]. In Level 8, the physical
network roles are divided into several groups, and the
resources of the divided physical network roles are gathered
together to form an abstraction view, which equals a new
generated virtual resource role in Level 9. A mapping of
virtual networks to the RM is illustrated in Fig. 3(c).
Iteratively, the virtual resource roles become the basic roles in
Level 10. In Level 11, the virtual resource roles are divided
into several groups, similar to the Logical Isolated Network
Partition (LINP) defined in Y.3011 [2]. Finally, the divided
virtual resources are accumulated to generate the new role of
the LINP.

C. Consideration of Event Management in the RM
In a network virtualization environment, fault management

becomes extremely difficult due to multiple layers of virtual
and physical networks. Therefore, in order to implement fault
management such as fault detection and root cause analysis,
event distribution among all related virtual networks and
physical networks should be controlled carefully, which is a
complicated task. Moreover, since virtual networks are not
static, the problem becomes even more complicated given that
the event distribution among virtual networks must be
modified dynamically following their dynamic generation and
deletion. Fig. 4 is a simple example. Let us assume that a
physical network (PN) consists of Nodes A, B, and C. Virtual
network (VN) 1 consists of Virtual Nodes A1, B1, and C1,
and VN 2 consists of nodes B2 and C2, which are all
generated from the PN. Furthermore, we suppose that from
VN 1 and VN 2, VN 11 and VN 22 are generated. In this case,
when Node A fails, in order to indicate an error in every

related virtual network, an event should be transmitted to VN
1 and further transmitted to VN 11, while when Node B or C
fails, the event should be transmitted to all the virtual
networks (VN 1, VN 2, VN 11, and VN 22) in the figure,
since they all rely on the PN. Compared to Fig. 2, it is clear
that while acting as a resource management model for network
virtualization, the RM also helps to express event distribution
among different virtual networks.

III. IMPLEMENTATION OF DEVELOPMENT PLATFORM
Based on the RM described above, we conclude that

according to the defined relationship between the roles at
different levels, some of the source code of the management
system such as the skeleton code of the role managers and
inter-role interaction, e.g., resource allocation/event
distribution, can be automatically generated. Therefore, we
implement our management development platform, which
mainly consists of a tool (the role generator) that can
automatically generate the referred source code from a RoDF
and an executor (the role integration unit) that actually
executes the generated source code. In addition, we implement
a general event processor called EAS+ by extending the OSGi
EAS. This event processing function is particularly designed to
prevent mass event cascades across modules within a
management system, and similarly it can be customized using a
RuDF to meet the needs of a specific system. It is expected that
the management system for virtual networks can be developed
in a short time with the assistance of the implemented
development platform.

Fig. 5 illustrates the structure of the proposed development
platform. First, three terminologies are clarified: role
component, role object, and role module. Role components are
the programs generated by the role generator from the RoDF.
One role component exists to manage a set of role objects of
one type. In fact, a role component acts as a factory program

Fig. 4. Example of event distribution among virtual networks.

Fig. 5. Structure of proposed development platform.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

that generates and deletes role objects. In the implementation,
role components are implemented as OSGi bundles. Role
objects represent role instances. In fact, they are structured
objects that contain the attribute data of a role. Role modules
are programs such as common functions and father classes of
existing role components, which are stored in a server and
they can be reused. Let us consider path management as a
simple example. A management system that performs
operations such as path creation and deletion is regarded as a
role component. Here, different paths are generated and
deleted as different role objects. Algorithms such as path
computation are reusable and are regarded as role modules.

A. Role Integration Unit
The role integration unit instantiates the role components

generated by the role generator and automatically maintains
the relationship among individual instances. By maintaining
information consistency among role components, the role
integration unit enables dynamic addition and deletion of role
components and even the implementation of event distribution
among role components. The role integration unit is
implemented using the OSGi framework.

B. Hardware Interaction Unit
The hardware interaction unit represents physical entities

internally as primitive roles and manages the relationship
between the physical entities and the primitive roles. In
addition, it provides the role integration unit with interfaces to
these primitive roles. The primitive roles are roles that are
initially assigned to hardware and are designed in order to
absorb the differences among various kinds of network
equipment.

C. External Relay Unit
The external relay unit offers network operators a way to

mediate external systems or Graphical User Interfaces (GUIs)
using the role instances provided by the role integration unit.

D. Role Generator
The role generator creates role components that are

defined in the RoDF. Since the role integration unit is based
on OSGi, the role generator will generate the source code for
role component correspondent bundles and download them
into the OSGi platform. When event distribution among roles
is considered, the role generator generates an event filter and
the skeleton code of an event handler for each type of event.
The event filter is set automatically according to the role
relationship as described in the RM so that only the events
destined for the role component itself will be received.
Moreover, an event handler skeleton is generated so that an
event and the corresponding event handler that processes the
event are combined.

E. RoDF
Since the development platform is designed based on the

RM, all the management objects should be roles. Therefore, a
RoDF contains only actual role definitions, which cover
network resources related to a role, the inter-role relationship,

and the event distribution among roles. The basic elements of
a role definition file are given in Table I.

TABLE I. BASIC ELEMENTS OF RODF

F. Event Processing Unit
 The event processing unit is based on EAS+, which is an

extension of the OSGi EAS. EAS+ specifically targets mass
event cascades across different modules. As a promising
feature, EAS+ can be customized by a simple and structured
RuDF in order to meet the needs of different systems. Based
on several existing works [8, 9], EAS+ was designed to be as
general as possible, so it can be applied easily to almost all
network management systems. Fig. 6 shows the structure of
EAS+, which further comprises a rule-setting interface, event
classifier, aggregated event generator, and event distributor. In
the design of EAS+, rules such as filtering rules and
accumulation rules must be set properly in order to achieve the
desired event processing functions. The rule-setting interface
is designed to load the RuDF that consists of these rules. The
event classifier classifies all events into categories according
to the filtering rules as written in the RuDF. It forwards the
events to different destinations according to their categories.
For example, normal events are directly forwarded to the
event distributor while mass events are forwarded to the
appropriate aggregated event generation instances. The
aggregated event generator, regarded as a core component of

Basic
Element Explanation Example

Role name
Identification of individual
roles Path

Attributes Information to describe a
role

�Path constitution (Ex.
node1<>link<>node2…)
�Bandwidth

Operations Possible operations on a
role

�CreatePath();
�DeletePath();

Inter-role
constraints

Basic constraints that
guarantee the existence of a
role

�Topology constraints (Ex.
necessary lower roles and their
combination sequence)
�Resource constraints (Ex.
relationship with the resources
in lower roles)

Event list List of events intended to
be received

�MESG_NODE_FAIL
�MESG_LINK_FAIL

Fig. 6. Overall architecture of EAS+.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

EAS+, generates aggregated events and forwards them to the
event distributor. It holds multiple aggregated event
generation instances that are generated for each filtering rule
in the event classifier. The aggregated event generation
instances comprise a channel and a rule execution engine so
that the events forwarded from the event classifier are first
accumulated in the channel, based on which new aggregated
events will be generated by applying the event aggregation
rules and the property generation rules in the rule execution
engine. Finally, the aggregated events are forwarded to the
event distributor. The event distributor provides an
environment for distributing events among different
components in the network management system. Luckily, the
OSGi EAS perfectly satisfies this requirement here and can be
used without change.

G. RuDF
A RuDF determines the functionality of the desired event

processing functions. In a RuDF, each aggregated event
generation instance has its own rule. The structure of a RuDF
is specified below.

1) Instance name

The instance name is used to identify the individual
aggregated event generation instance. A rule definition file
consists of rules for multiple aggregated event generation
instances, and the following items exist for each instance.

2) Filtering rule

The filtering rule is used to define the functionality of the
event classifier. Since an event holds the topic and property
attributes in the context of OSGi [6], a filtering rule in EAS+
considers both the topic and property of an event. In the case
that an event matches both the topic and property of a filtering
rule, it will be forwarded to the designated aggregated event
generation instance.

3) Accumulation rule

The accumulation rule defines the attributes (maximum
number accumulated and maximum accumulation time) of a
channel in the aggregated event generation instance. In fact, it
sets a trigger to forward a certain number of events buffered in
the channel to the rule execution engine at the same time.

4) Event generation rule

The event generation rule is used to generate aggregated
events, each of which consists of an event aggregation rule
and one or multiple property generation rules. It should be
noted that multiple event generation rules can be defined for a
single aggregated event generation instance. Details of event
generation rules are given below.

 a) Aggregated event name

The aggregated event name represents the topic name of an
aggregated event that will be generated by EAS+.

 b) Event aggregation rule

The event aggregation rule is applied to the events
buffered in the channel and decides how event aggregation is

performed. All the events matching the event aggregation rule
are expected to be aggregated to a single event.

 c) Property generation rule

The property generation rule specifies the property
information that will appear in the aggregated events that are
newly generated. The following are details regarding the
property generation rule.

 i) Property name

The property name specifies a list of property keys of an
aggregated event.

 ii) Property type

The property type defines the type of information that
appears in the property value: a list of original events or the
number of events aggregated. If the property type represents
the number of events aggregated, the object key name and
topic existence flag items are unnecessary.

 iii) Property aggregation rule

The property aggregation rule is actually a filtering rule
that considers both the event topic and property. It considers
the events that are buffered in the channel and is matched to
the event aggregation rule above. In fact, it decides the content
of aggregated events generated by EAS+.

 iv) Object key name

The object key name decides the key names that will be
written in the property value of the aggregated event.

 v) Topic existence flag

The topic existence flag indicates if the original event topic
names are to be written to the object key name as the property
of an aggregated event.

IV. VALIDATION
In order to validate the feasibility of our implementation,

we utilize it to assist the development of a management
system for a next generation mobile service.

A. Design of Prototype Infrastructure
The prototype infrastructure was designed by referencing

the 3GPP Long Term Evolution (LTE) mobile service, which
is based on an all-IP based network [5, 10]. In the prototype
infrastructure, voice services are enabled by dynamically
allocating both network resources and server resources. The
prototype infrastructure adopts both server virtualization and
OpenFlow technology to achieve sufficient flexibility.

Fig. 7 shows a rough configuration of the prototype
infrastructure. Since the IP multimedia subsystem (IMS) is
used for voice services in this case, we prepare two data
centers, called “DC-X” and “DC-Y,” to accommodate the
functions such as the Interrogating-Call Session Control
Function (I-CSCF), Proxy (P)-CSCF, and Serving (S)-CSCF
in the IMS. The S-CSCF is actually actualized as two
processes (p 1 and p 2), corresponding to two VMs, in order to
implement load balancing for the incoming call requests.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

Initially, they are both located in DC-X. OpenFlow switch
(OFS) 1 and OFS 2 provide application-aware virtual paths
between the mobile terminals and the data centers, while OFSs
3 and 4 work inside the data centers in order to balance traffic.

B. Validation
We developed a management system for the prototype

infrastructure by using the prototype development platform.
As illustrated in Fig. 7, 4 levels of views (service, logical
function, logical resource, and physical resource) were created
and maintained in order to manage the prototype infrastructure.
Regarding the 4 levels of views as 4 networks (3 virtual
networks and 1 physical network), we designed a role
architecture for the prototype infrastructure as illustrated in
Fig. 8, which is the basis of the RoDF. In addition, we utilized
EAS+ to assist the development of the event processing
function, which handles event forwarding and processing
among these components such as the CPU alarms and
interface alarms.

The validation confirmed the functioning of the
management system for the prototype infrastructure. If an S-
CSCF process (p 2) failed, the remaining process (p 1) would
become more highly loaded since it would receive an
unexpected number of call requests. To deal with resource
overloading in DC-X, the management system that is
generated from the proposed management development
platform responds by setting up a new process (p 2) in the
other data center (DC-Y) which achieves load balancing. At
the same time, the management system also automatically
modifies the flow tables in the related OpenFlow switches in
order to re-route traffic.

V. CONCLUSION
This paper presented an implementation of a novel

management development platform for virtual networks,

through which a developer can develop modularized
management systems for virtual networks by writing
definition files. Although the prototype system validates the
feasibility to some extent, there are still several unsolved
problems. For example, we listed some basic elements of role
definition files in this paper, however, their construction needs
further research. File design (structure and element) will
impact the functionality and effectiveness of the platform. In
addition, there is the question of even how to evaluate our
proposal. The degree to which the volume of source code can
be decreased strongly depends on the system used and the
number of role modules that can be reused, so more
experiments are necessary. We believe that this research can
be a catalyst for the further deployment of network
virtualization technology.

REFERENCE
[1] N.M. Mosharaf, K. Chowdhury, and R. Boutaba, “Network

virtualization: State of the art and research challenges,” IEEE
Communication Magazine, vol. 47 (7), pp. 20-26, July 2009.

[2] Draft ITU-T Recommendation Y.3011, “Framework of network
virtualization for future networks,” Oct. 2011.

[3] A. Galis, S. Denazis, C. Brou, and C. Klein, Programmable Networks
for IP Service Deployment, Artech House, May 2004.

[4] ONF White Paper, “Software-defined networking: The new norm for
networks,” April 2012.

[5] W. Shen, K. Minato, Y. Tsukishima, and K. Shimano, “Management
engine using hierarchical role model,” in Proc. of IFIP/IEEE
DANMS2013, Ghent, Belgium, May 2013 (to be published).

[6] OSGi Specification, “OSGi core release 5,” March 2012.
[7] N. McKeown, et al., “OpenFlow: Enabling innovation in campus

networks,” in ACM SIGCOMM Computer Communication Review, vol.
38 (2), pp. 69-74, April 2008.

[8] S. Kandula, D. Katabi, and J.-P. Vasseur, “Shrink: A tool for failure
diagnosis in IP networks,” In Proc. of ACM SIGCOMM workshop on
Mining network data (MineNet), pp. 173-178, New York, 2005.

[9] R.R. Kompella, J. Yates, A. Greenberg, and A.C. Snoeren, “Detection
and localization of network blackholes,” In Proc. of IEEE INFOCOM,
pp. 2180-2188, San Diego, USA, May 2007.

[10] Y. Nakajima, et al., “Design and implementation of virtualized ICT
resource and management system for carrier network services toward
cloud computing era,” in ITU Kaleidoscope 2013, April 2013.

Fig. 7. Configuration of prototype infrastructure.

Fig. 8. Role architecture for prototype infrastructure.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

