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Abstract—Modeling the mobility of mobile devices has always
been a key issue for researchers as mobility needs to be taken
into consideration in a variety of research situations in wireless
networks. For many years, researchers have been striving to come
up with more accurate mobility models which produce results
similar to real mobility data. Although recent focuses on social
relationship have improved the performance of mobility models,
they still neglect or underestimate the influence of spatial and
temporal factors which might greatly affect the movement of
people. In this paper, we propose a novel way of modeling human
movement on the basis of social, spatial and temporal factors
by adopting a unique model structure and by introducing new
mobility features such as roads. Simulation demonstrated that
these measures produce results similar to real mobility data.

I. INTRODUCTION

A key issue for researchers has long been how to model
the mobility of mobile devices. This problem affects many
aspects of wireless networks such as transmission protocol,
resource reservation and location management. Although a
number of experiments have been conducted to collect real
movement traces, real movement data has rarely been used
for the evaluation and testing of protocols and applications for
wireless networks [1] due to its difficulty in implementation
and lack of generality. In contrast, synthetic mobility models
are highly preferred thanks to their theoretical attributes, which
make them relatively easy to implement.

In the research of mobility models, although data transmis-
sion is conducted using wireless devices, attention is focused
on people because mobile devices are carried by people most
of the time, so the mobility problem of wireless devices is
actually the mobility problem of people.

In recent years, researchers have found that a person’s
movements are closely connected to his or her social network,
prompting the emergence of social mobility models which
concentrate primarily on social relationships. In previous
studies of social mobility models, social relationships were
assumed to be the driving force of a person’s movements.
However, social relationships cannot account for all aspects
of human movement. For example, the notion of familiar
strangers [2] states that some people frequently cross paths
although they do not actually know each other. It is estimated

that social relationships can explain only about 10% of a
person’s movements as derived from cell phone data and up to
30% as derived from location-based social networks [3]. In this
paper, we propose a novel way of modeling human movement
on the basis of social, spatial and temporal factors by adopting
a unique model structure and by introducing new mobility
characteristics. Simulation demonstrated that these measures
compensate for the deficiencies of using social factors alone
and produce results similar to real mobility data.

The structure of this paper is as follows: Section 2 gives
a brief overview of related work in the research of mobility
models. Section 3 describes the system model of our proposed
mobility model. Section 4 compares the simulation results
of our proposed model with real mobility data. Section 5
concludes with a summary of the key points and a discussion
of possible future research directions.

II. RELATED WORK

In this section, we discuss several important existing mo-
bility models and their respective characteristics.

The earliest and most widely used mobility model is the
random waypoint model [4] in which a person’s speed, direc-
tion, and destination are assumed to be random. It is widely
used in simulation and evaluation because of its simplicity.
However, it fails to consider any practical influence on a
person’s movement, and the results of this model were proved
to be largely at variance with real mobility data [5].

Researchers have since identified temporal and spatial fac-
tors such as location preferences and difference between
workday and weekend that affect a person’s movements. Their
incorporation has made mobility models more accurate and
reality-oriented.

The working day movement model [6] combines several
submodels representing home activity, office activity, evening
activity and transport and thus can simulate a person’s move-
ments during a working day. The time-variant community
(TVC) mobility model [7] incorporates skewed location visit-
ing preferences and periodical re-appearance at same locations,
which are outcomes of temporal and spatial factors in real life.
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Recently, social factors have caught the attention of re-
searchers. The first model to incorporate them, the community-
based mobility (CMM) model [1], is based on the assumption
that the main factor controlling a person’s movements is his
or her social relationships. This model simulates communities
using social network theory and has people move toward a goal
which is calculated from the ratio of relationships. Although
this model opened up new horizons in the research of mobility
models by bringing into social factors, the results are not in
complete accord with real mobility data. Several improved
models of CMM have thus been put forward. The home-cell
community-based mobility model [8] (HCMM) is based on
the assumption that each node has a home cell and the home
cell has strong attraction toward the node while other cells
only have a relatively low attraction toward the node. The
enhanced community-based mobility model [9] (ECMM) fur-
ther improves the HCMM by introducing important mobility
characteristics like pause period and group movement. Another
major contribution of ECMM is improvement in the arbitrary
social network input ability, i.e., separating the social network
model from the conventional CMM, which makes the model
more flexible and easier to use.

In addition to these models in the CMM family, the mobility
model put forward by S. Yang et al. [10], which focuses on
the concept that a person belong to different communities at
different time is able to capture some temporal features of a
person’s movements.

However, all of these models place too much emphasis on
the effects of social factors on a person’s movements while
underestimating or even neglecting the effects of spatial and
temporal factors. In the following section, the system model
of our mobility model is presented which offers a new way of
combining social factors with temporal and spatial factors.

III. PROPOSED MOBILITY MODEL

In order to make our model easier to use, our model
inherited the feature of separating the social network model
from the mobility model put forward by Fischer et al. [11].
After having the input information of social network and
community affiliation, a number of nodes representing people
are generated and their related information is initialized. A
goal is given to each node, and during each time slot, each
node moves toward its goal. After reaching its goal, a node
stays there for a period of time. It leaves for the next goal
in accordance with a goal-deciding algorithm, which will be
discussed in detail in the following paragraphs.

As mentioned, spatial and temporal factors are overlooked
in most previous social mobility models, and even a few
social mobility models which did consider spatial and temporal
factors do not have a very reasonable mechanism. For example,
some previous mobility models simulate temporal factors by
exactly duplicating the movement patterns of same time previ-
ous day or week which is decided by social factors. This could
emphasize the effects of social factors while undermining the
effects of temporal factors.

Our model differentiated itself from previous models by
taking into account social, spatial and temporal factors as a
whole during the process of goal-deciding instead of focusing
mainly on social factors as done by previous models.

In our model, people are represented by nodes and the entire
map is made up of several grids. The possibility of nodes
moving to a certain grid is represented by Grid Attraction Fac-
tor(GF) which is calculated from Grid Attraction(GA) while
GA is calculated from Social Attraction Factor(SF), Place
Attraction Factor(PF) and Distance Attraction Factor(DF). The
detailed equation will be explained in the following text.

A. Social Factors

In our research we used the social network generated from
the Toivonen algorithm [12] because the social factors were
not our main focus. We also used the Newman and Girvan
algorithm [13] to discover communities in the social network.

The social attraction between nodes u and v is defined as
follows:

SCu,v = wu,v × δu,v, (1)

where wu,v is the weight between node u and v in the social
network, and correction factor δu,v strengthens the influence
between nodes within the same community while weakening
the influence between nodes from different communities. And
the social attraction of a grid G0 toward a certain node u at
time t is defined as follows:

SAG0
u (t) =

∑
v′∈G0

SC(t)u,v′ (2)

The social attraction of G0 toward node u at time t is the
sum of the social attraction between u and all nodes v

′
at G0

at time t. Then the social attraction factor of a grid G0 in
goal-deciding over node u at time t is:

SFG0
u (t) =

SAG0
u (t)∑

G′∈G SA
G′
u (t)

(3)

The social attraction factor of G0 over node u at time t is
the proportion of the social attraction of G0 toward node u at
time t to the sum of the social attraction of all grids in the
map G toward node u at time t.

B. Spatial Factors

1) Roads: In previous models, the factor of road has always
been ignored. People are regarded as being able to travel
between two places directly following a straight line, as shown
in figure 1. This kind of movement is inconsistent with our
real life experience because in reality people generally move
along the road. We therefore added the factor of road to our
model, and we intend to study whether this factor would have
influence on the final result of mobility models and how much
influence they have. What’s more, nodes will have higher
speed in roads representing the movements of cars and public
transportation in real life.

gabacho
タイプライターテキスト
Copyright 2013 IEICE



Fig. 1. Direct movement and road movement

2) Pause time: In real life, when people arrive at a place,
they usually stay for a period of time before starting to move
again. This phenomenon is a fairly important aspect in real
mobility, and it is represented by pause time in our model.
After a node reaches its current goal, the node will not start
another movement immediately. Instead, it stays for a period
of time.

In order to get a more accurate mathematical equation of
pause time, we made a statistical analysis of the staying time
of trips covering from one minute up to one day collected by
the NHTS [14]. We found that the distribution of pause time
follows a power law distribution with a negative exponent.
Therefore, the pause time in our model is predicated on a
mathematical equation following power law distribution drawn
from data of real trips.

3) Place attraction: Apart from social attraction, in our
model, every grid also has a place attraction toward each node.
The mechanism of place attraction consists of three aspects.

The first aspect is general place attraction. Every grid in
the map has a very weak attraction toward each node, and
about one quarter of all grids in the center of the map have a
slightly stronger attraction toward each node, and then several
grids in the very center of the map have a much stronger
attraction toward each node. This is to simulate the situation
where places in the center of a city like downtown areas have
a profusion of amenities and are often visited by people.

The second aspect is random place attraction. Several grids
have a strong attraction over certain nodes, representing peo-
ple’s interests and hobbies.

The third aspect is home/work place attraction. Every node
has its a “home place” and “work place”, and nodes within
the same community tend to have home place and work place
close in distance. In real life, most people tend to stay at
or near their home during their free time, and equally, they
tend to stay at or near their work place during their work
time. Therefore, the home place and work place will have very

strong attraction toward nodes during different time periods.
The place attraction factor of a grid G0 in goal-deciding

over node u at time t is defined as:

PFG0
u (t) =

PAG0
u (t)∑

G′∈G PA
G′
u (t)

(4)

The place attraction PA is calculated from the previously
stated three aspects. And the place attraction factor of G0 over
node u at time t is the proportion of place attraction of G0

toward node u at time t to the sum of place attraction of all
grids in the map G toward node u at time t.

4) Distance attraction: In real life, people generally prefer
to go to closer places than to more distant places [15]. The
factor of distance attraction is introduced to simulate this
preference.

We found that the mechanism of distance attraction also
follows a power law distribution with a negative exponent.
The equation is also calculated from statistical analysis of data
of the travel distance in NHTS. The value of this negative
exponent is -1.1. The value of distance attraction is computed
by substituting for the base of the equation the distance
between the grid where the node currently is at and the grid
where the goal is at. Take figure 1 as an example, if currently
the node is at Grid Ga3, then the distance attraction for Ga2,
Ga4 and Gb3 is 1−1.1, and the distance attraction for Ga1,
Gb2, Gb4 and Gc3 is 2−1.1. Then the distance attraction factor
of a grid G0 in goal-deciding over node u at time t is thus
defined as:

DFG0
u (t) =

DAG0
u (t)∑

G′∈GDA
G′
u (t)

(5)

The distance attraction factor of G0 over node u at time t
is the proportion of distance attraction of G0 toward node u
at time t to the sum of distance attraction of all grids in the
map G toward node u at time t.

C. Temporal Factors

In previous models, temporal difference is marked between
workday and weekend. However, we think that a more accu-
rate demarcation of the temporal difference should be drawn
between work time and free time. In our model, the period 8
a.m. to 6 p.m. during workday is deemed to be work time,
and the rest of the time is deemed to be free time.

During work time, we assume that the work place has a
strong attraction toward nodes and that place attraction plays
a more important role than social attraction. During free time,
we assume that the home place has a strong attraction toward
nodes and that social attraction plays a more important role.
Therefore, the grid attraction combining social, spatial and
temporal factors of grid G0 toward node u at time t is defined
as:

GAG0
u (t) = α(t)SFG0

u (t) + β(t)PFG0
u (t) + γ(t)DFG0

u (t),
(6)
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(a) Contact duration

(b) Inter-contact time

Fig. 2. CCDF of each attraction factor compared with UCSD

where the temporal correction functions of α(t), β(t), and γ(t)
are determined completely on the basis of the timing of goal-
deciding, and the sum of α(t), β(t), and γ(t) should be 1 at
any time to ensure the fairness of goal-deciding. Then the final
grid attraction factor for node u to go to grid G0 at time t is
defined as:

GFG0
u (t) =

GAG0
u (t)∑

G′∈GGA
G′
u (t)

(7)

The grid attraction factor of G0 over node u at time t is the
proportion of grid attraction of G0 toward node u at time t to
the sum of grid attraction of all grids in the map G toward
node u at time t. After a goal grid is decided, the actual goal
position is randomly chosen within that grid.

IV. EVALUATION

The simulation of our mobility model introduced in the
previous section was carried out in a map of 4km×4km, and
the size of each grid was 200m×200m so the total number of
grids was 400. The total number of nodes was 100, and the
range of transmission for a mobile device was considered to be

(a) Contact duration

(b) Inter-contact time

Fig. 3. CCDF of our model under road movement, direct movement compared
with UCSD

200 meters. The speed of the nodes was randomly distributed
from 1m/s to 6m/s, and when a node entered a road, the
speed range changed from 1m/s to 6m/s to 1m/s to 20m/s.
The duration of this simulation was 20 days, and the final
outcome was the average value of the simulation from several
times of running in order to achieve a balanced result.

In order to measure the performance of our mobility model,
we used the metrics of inter-contact time and contact duration.
Inter-contact time is the time duration between two consecu-
tive contacts of the same people. Contact duration is the time
duration of one contact. Both metrics are of great importance
in ad hoc networks, and particularly in opportunistic mobile
network [16]. Contact duration indicates the length of a con-
tact, therefore influencing the total amount of information that
could be transmitted during a contact. Inter-contact time often
indicates the frequency and probability of being in contact,
thus affecting the speed of relaying information.

Apart from the results of our mobility model, the result of
a real mobility data set called UCSD [17] was also introduced
to give a comparison between our results and real movement
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data. UCSD is a real data set collected from wireless handheld
PDAs in a campus wireless network with 275 participants.

Figure 2 shows the complementary cumulative distribution
function (CCDF) of contact duration and inter-contact time of
social attraction, place attraction, distance attraction respec-
tively against UCSD.

As shown in these figures, none of the three attractions
alone could give a similar result to the real mobility data.
Although the social attraction bears some resemblance both
in short contact duration and short inter-contact time, it fails
to capture the characteristics of long contact duration and long
inter-contact time which is the strength of place attraction and
distance attraction.

Figure 3 shows the CCDF of contact duration and inter-
contact time of our proposed model combining social, spatial,
temporal factors in situations where node moves along the
road and node moves directly to its goal against UCSD.

As shown in figure 3, although both road movement and
direct movement produce similar results, road movement
produces results closer to real movement as far as UCSD
is concerned. While our model produces similar result to
real data most of the time, the results still remain to be
improved as far as long contact duration and short inter-
contact time are concerned. There is apparently a connection
between long contact duration and short inter-contact time; i.e.,
when the contact duration becomes longer the inter-contact
time is bound to be shorter. Therefore, we are considering
strengthening such social aspects as group movement in order
to achieve long contact duration.

It should be noted that the mobility data of UCSD has
its limitations as well. It would be inappropriate to represent
human movement only by one data set. As a next step, we are
considering introducing several mobility data sets to enhance
the comparability of our results.

V. CONCLUSION AND FUTURE WORK

In this paper, a mobility model combining social factors
with spatial and temporal factors and incorporating several
new mobility features was proposed. In order to compare the
results of our proposed mobility model with real movement
of people, we used a data set with real mobility data. It was
shown that the spatial factor of road movement improves,
although not greatly, the final result of the mobility model.
Generally speaking, our proposed model produces similar
movement results to real data. We are thinking about intro-
ducing group mobility to further improve the results.

However, real mobility data set has its own limitations, and
one data set cannot represent the generality and intricacy of
people’s movements. Therefore, more results of real data set
are needed to better evaluate our mobility model.

Because some spatial and temporal factors used in this
model are based on assumptions and preset conditions, it
would be better to use more realistic input data. We thus intend
to change the input method by adopting a more flexible way of
inputting spatial and temporal factors like the social network
model, which should make our mobility model easier to use.

In order to further improve the accuracy of our model, we
will look into the effect of dynamic changes [18] because the
input factors might change over time. For example, people
may move their homes or change their jobs, which would
change their mobility patterns. Therefore, dynamic changes in
the input data are crucial to the accuracy of mobility models,
and we will thus consider the addition of dynamic changes.
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