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Abstract—This paper studies the impact of connection admis-
sion control (CAC) on the congestion management practices and
the revenue of a monopoly access point (AP). The AP provides
congestion-indication signals that suggest users to choose their
access probabilities in response to network loading conditions. A
Stackelberg leader-follower game is then formulated to analyze
the interaction between the AP and the users. In particular, the
AP first estimates the probable utility degradation of existing
users consequent upon the admission of an incoming user.
Second, the AP decides whether the connection of the incoming
user should be admitted or not. The proposed CAC policy is
completely distributed and can be implemented by individual
APs using only local information. Simulation results show that
the proposed algorithm achieves higher saturation throughput
as well as greater revenue gain when compared with an existing
algorithm.

I. INTRODUCTION

In an wireless network, an incoming user means a potential
gain to the network revenue due to the improved resource
utilization. On the other hand, the incoming user may cause
congestion and degradation in Quality of Service (QoS) pro-
vided for the existing users. In case that the utility decreases
below the price charged, an existing user may reject the price
and leave, which in turn results in a loss to the network
revenue.

The purpose of CAC is to limit the amount of traffic
admitted into a particular service class so that the QoS of the
existing users will not be degraded, while the radio resources
(e.g., bandwidth) can be efficiently utilized. Therefore, CAC
policy can play an important role in both QoS provisioning
and revenue maximization.

In [1], authors investigated the economic behaviour of
wireless users under an assumption that the network has
limited capacity. The authors proposed an algorithm that limits
the AP to admit at most m users at a time, and devised the
optimal pricing strategy for optimizing the network revenue.
However, it is argued that the limitation is a little bit strong.
For instance, if the admission of the “m + 1”-th user would
increase the overall revenue, there is no reason to think that
the AP will reject the new connection.

In [2], [3], [4], the maximum number of users to be
admitted in a wireless network is derived by solving the
revenue optimization problem using linear programming. Then
a threshold-based CAC policy uses the maximum number of
users to admit or reject incoming users. However, in the above-
mentioned models, the diversity in user information, such as
type of request was not sufficiently considered.

In [5], [6], authors tried to obtain user information from
surveys on historical data, and proposed CAC policies for
maximizing the network revenue as well as the users’ payoffs.
However, these policies require that the AP has a global
knowledge of each user’s utility and are hence not practical.

In this paper, a Stackelberg leader-follower game is struc-
tured to analyze the interaction between the AP and each
incoming user. An incoming user chooses an access probability
so as to optimize her payoff (i.e., best response). Given the best
response, the AP can derive the private utility information of
the incoming user through backward induction, and estimate
whether the revenue growth from the incoming user can
compensate for the revenue loss incurred by the quitting of
existing users. Then the AP decides whether the connection
of the incoming user should be admitted or not. The proposed
CAC policy is completely distributed and can be implemented
by individual APs using only local information.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model. Section III describes
the users’ behaviour when no price is charged and proves
that the network can be easily overtaken without a proper
pricing scheme. Section IV presents the access-probability-
based pricing scheme. Section V describes the Stackelberg
game structure and finds the Nash equilibrium solution to this
game. Section VI shows the simulation results. Section VII
concludes this paper.

II. SYSTEM MODEL

As depicted in Fig.1, the model we are envisioning assumes
that each user communicates with a single AP directly. The
users always have a packet available for transmission. Namely,
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Fig. 1. System model.

the network is operated in saturation conditions. Each user
contends for channel access according to some user-chosen
access probability. A transmission is successful if and only
if there is a single transmission attempt at that time. Hence,
QoS differentiation is achieved when users with high access
probabilities transmit more often than those with low access
probabilities [7].

Let x be the access probability chosen by the incoming user.
Moreover, there are n number of existing users, and the access
probabilities chosen by the existing users are denoted by
xi, i ∈ {1, ..., n}. The saturation throughput of the incoming
user is given by τ as follows.

τ = x

n∏
i=1

(1− xi) (1)

User demand is assumed to be elastic [8], and the utility of
the incoming user is given by U as follows.

U = θ ln(1 + τ) (2)

where θ is a user-dependent scale factor and can be thought of
as a parameter representing the priority of the incoming user’s
willingness to pay (WTP).

III. USERS’ BEHAVIOUR WITHOUT PRICING

When there is no price to be charged, the payoff for the
incoming user is given by F (x) as follows.

F (x) = θ ln

[
1 + x

n∏
i=1

(1− xi)

]
(3)

Consider the following optimization problem
P:

maximize F (x) (4)

subject to 0 ≤ x ≤ β (5)

where β ∈ (0, 1) is the maximum value of access probability
that a user can choose. Define the Lagrangian

L(x, λ) = θ ln

[
1 + x

n∏
i=1

(1− xi)

]
+ λ(β − x) (6)

where λ (λ > 0) is a Lagrange multiplier. Take the partial
derivative with respect to x

∂L(x, λ)

∂x
=

θ
∏n
i=1(1− xi)

1 + x
∏n
i=1(1− xi)

− λ (7)

After applying stationarity conditions, it can be concluded
that, at a maximum of L over x ≥ 0, the following conditions
hold: 

θ
∏n

i=1(1−xi)

1+x
∏n

i=1(1−xi)
= λ if x > 0

θ
∏n

i=1(1−xi)

1+x
∏n

i=1(1−xi)
≤ λ if x = 0

(8)

The first row of conditions (8) could be used to construct
the dual of P. The objective function of the dual problem is
thus

H(λ)

= θ ln
θ
∏n
i=1(1− xi)
λ

+ λ

[
β +

1∏n
i=1(1− xi)

]
− θ

(9)

and the dual problem is
D:

minimize H(λ) (10)

over λ > 0 (11)

Let ∂H(λ)
∂λ = 0 then

− θ

λ
+ β +

1∏n
i=1(1− xi)

= 0 (12)

Since F (x) is concave and the constraint (5) is linear, there
is no duality gap between the primal and the dual problem. It
can therefore be concluded that, at a maximum of F (x) over
0 ≤ x ≤ β, the following condition holds.

x = β (13)

From Eq. (13), it could be concluded that each incoming
user tries to occupy the channel as much as possible. As
a consequence, the network can be easily overtaken by the
incoming users, leading to the tragedy of the commons [9].

IV. ACCESS-PROBABILITY-BASED PRICING

To address the above-mentioned tragedy of the commons
problem, a novel access-probability-based pricing scheme is
employed. Each user pays a price proportional to the amount
of the access probability. To be specific, the price is set to
be px for the incoming user, and pxi for the existing users
i ∈ {1, 2, ..., n}. Here p is a constant.

The AP cannot suspend the service as long as the user can
keep paying; while the user can disconnect voluntarily. The
service session ends at the first time the user rejects the AP’s
price proposal, including three cases:
• The user finds the price is too high to accept.
• The user’s utility decreases below the price charged due

to congestion.
• The user does not intend to connect any more.
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Therefore, the price stays unchanged for each user, and is
merely dependent on the user-chosen access probability. The
overall payment charged grows proportionally with the time
each user connects.

V. STACKELBERG GAME AND REVENUE MAXIMIZATION

In Economics, the Stackelberg game is used to analyze
competition in an oligopoly market (i.e., a market dominated
by a small number of suppliers). In such a market, a leader
firm commits a strategy first and then other follower firms
move sequentially. The equilibrium of this formulation can be
obtained by backward induction. For the case of oligopoly
competition in quantity, given the best response of each
follower, the leader can choose the optimal supply quantity
to gain the highest revenue [10].

This Stackelberg game structure is applied to obtain the
equilibrium of bandwidth resource sharing between the AP and
each incoming user. It is assumed that the AP and the user are
rational in the sense that they are aware of their alternatives,
have clear preferences, and take action deliberately after some
process to maximize their payoffs. The Stackelberg game,
Γ(Player, Strategy, Payoff), is described as follows:
• Player: The AP and the incoming user are the players of

this game.
• Strategy: For the incoming user, the strategy is the selec-

tion of access probability; and for the AP, the strategy is
the decision on whether to admit the connection or not.

• Payoff: For both the AP and the incoming user, the
payoffs are the corresponding revenue and profit.

Applying the access-probability-based pricing, the payoff
for the incoming user is given by

S(x) = θ ln

[
1 + x

n∏
i=1

(1− xi)

]
− px (14)

subject to 0 ≤ x ≤ β (15)

Take the first derivative of S(x) with respect to x

S
′
(x) =

θ
∏n
i=1(1− xi)

1 + x
∏n
i=1(1− xi)

− p (16)

As shown in Fig. 2, let S
′
(x) equal to 0.

x∗ =
θ

p
− 1 (17)

If taking the second derivative of S(x) with respect to x

S
′′
(x) = −

θ [
∏n
i=1(1− xi)]

2

[1 + x
∏n
i=1(1− xi)]

2 < 0 (18)

, which suggests that the function is concave down at x∗.
Therefore, at a maximum of S(x) over 0 ≤ x ≤ 1, the
following condition holds.

x =


0 if θ ≤ p,

min (β, x∗) if θ > p.

(19)

Fig. 2. Optimal access probability.

Now looking at the AP’s side, without the exact knowledge
about the incoming user’s preference (i.e., θ), the AP has
to make a decision based on the history of incoming user’s
choice (i.e., x). Specifically, the AP can obtain the θ through
backward induction.

θ


= (1 + x)p if x ∈ (0, β),

≥ (1 + x)p if x = β.
(20)

Similarly, the priority of existing user i’s WTP can be
obtained by

θi


= (1 + xi)p if xi ∈ (0, β),

≥ (1 + xi)p if xi = β.
(21)

The system is dynamic in terms of the fact that user-
s join and leave dynamically. The utility of each ex-
isting user decreases with the admission of an incom-
ing user. For example, when the incoming user with
access probability x is admitted, the utility of exist-
ing user i drops from θi ln

[
1 + xi

∏n
j=1,j 6=i(1− xj)

]
to

θi ln
[
1 + xi(1− x)

∏n
j=1,j 6=i(1− xj)

]
. In case that the util-

ity decreases below the price charged (i.e., pxi), the existing
user i may reject the price and leave. This imposes the AP a
capacity constraint on her revenue maximization problem.

Let t, t̃, and ∆t = t̃ − t be the arrival time, the intended
departure time, and the intended stay duration of the incoming
user. The revenue received from the incoming user is therefore
denoted by

Rgrowth = px∆t (22)

When each existing user adopts a myopic strategy [11], i.e.,
the existing user remains connected if the price charged is less
than her utility, otherwise the user rejects the price and leaves,
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the revenue loss incurred by the quitting of existing users is
denoted by Rloss as follows.

Rloss =
∑

θi ln[1+xi(1−x)
∏n

j=1,j 6=i(1−xj)]<pxi

pxi(t̃i − t) (23)

where t̃i is the intended departure time of the existing user i.
From Eq. (21), it could be concluded that: (i) when the

existing user i sets the access probability as xi ∈ (0, β), the AP
can obtain the θi by (1+xi)p; and (ii) when the existing user i
sets the access probability as xi equals β, the AP cannot know
the priority of existing user i’s WTP exactly. In this paper,
we assume that the AP is risk-averse, and uses the minimum
value, namely, (1 + xi) p to estimate θi.

Rloss =
∑

(1+xi)p ln[1+xi(1−x)
∏n

j=1,j 6=i(1−xj)]<pxi

pxi(t̃i − t)

(24)

Therefore, in order to maximize her overall revenue, the AP
has to decide the CAC policy based on not only the revenue
growth from the admission of an incoming user, but also
the potential revenue loss incurred by the quitting of existing
users. To be specific, a rational AP admits the connection of
the incoming user when the revenue growth from the incoming
user can at least compensate for the revenue loss incurred by
the quitting of existing users. Therefore, the connection of the
incoming user is admitted when the following condition holds.

Rgrowth > Rloss (25)

Combining Eq. (22), (24), and (25), it could be concluded
that the AP admits the connection of the incoming user if and
only if

x∆t >
∑

(1+xi)p ln[1+xi(1−x)
∏n

j=1,j 6=i(1−xj)]<pxi

xi(t̃i − t)

(26)

On the other hand, the incoming user accepts the price px
if and only if

S(x) = (1 + x) p ln

[
1 + x

n∏
i=1

(1− xi)

]
− px

≥ 0

(27)

The pricing and CAC processes are executed one user after
another according to their arrival time. The steps involved in
QoS negotiation and admission control [12] are shown in Fig.
3.

Step 1: An incoming user arrives at the network, and detects
the existence of APs via periodically broadcasted beacons.
The beacon packet contains: price index p and the access
probability of each existing user, namely, the congestion-
indication signal.

Step 2: The incoming user tries to begin a session by
initially sending a Service Level Specification (SLS) packet.

Fig. 3. Diagram showing the sequence of steps involved in pricing and
connection admission control.

The SLS packet contains: the access probability (i.e., x) and
the stay duration (i.e., ∆t).

Step 3: The AP that receives the request, decides whether
the connection of the incoming user should be admitted or not
by comparing Rgrowth with Rloss.

VI. SIMULATION RESULTS

As described in the previous section, we consider the uplink
of random access MAC where each user contends for channel
access according to some user-chosen access probability. A
transmission is successful if and only if there is a single
transmission attempt - there is no carrier sensing, and we do
not model explicit back-off.

Each user arrives according to a Poisson process and stays
for a time, which is exponentially distributed. Each simulation
lasts 10 hours, and is repeated for one thousand times. Other
detailed simulation settings are summarized as shown in
TABLE I.

TABLE I
A SUMMARY OF THE SIMULATION SETTINGS.

Arrival rate [1, 20] per hour
Average stay duration 1 hour
Raw bit rate 11 Mbps
Constant β 0.5
Constant p 100
Users’ Willingness to Pay (θ) uniformly distributed in [100, 150]
Access probability uniformly distributed in [0.0, 0.5]

In order to explore the performance of the proposed algo-
rithm on QoS provisioning and revenue, we use no CAC policy
(NCP) for comparison. The distinction between NCP and our
proposed algorithm is that: the proposed scheme examines
the potential revenue loss before admitting an incoming user,
while NCP admits all users straightforwardly.
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Figure 4 (a), (b), and (c) show the total saturation through-
put, the average saturation throughput, and the revenue as a
function of the arrival rate, respectively. The curves plotted in
Fig. 4 (a) and (b) show the effect of the proposed algorithm in
terms of improving QoS. When the arrival rate is 20 users per
hour, the total saturation throughput and the average saturation
throughput are increased by 19.5% and 37.4%, respectively,
compared with those of NCP. For the revenue, the curves
plotted in Fig. 4 (c) show that the performance of the proposed
algorithm is slightly better than that of NCP, but the difference
between them is not significant.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a Stackelberg game structure is applied to
obtain the equilibrium of bandwidth resource sharing between
the AP and each incoming user. The game is composed of
three steps: (i) The AP predefines a pricing scheme and pro-
vides congestion-indication signals for users; (ii) An incoming
user chooses the access probability to optimize her payoff,
namely, the best response strategy; (iii) Based upon the best
response stategy, the AP then decides whether the connection
of the incoming user should be admitted or not. The simulation
results show that the proposed algorithm achieves higher
saturation throughput as well as greater revenue gain when
compared with NCP.

Future work includes the extension of this algorithm to
multi-AP scenarios, in which the rejected users could associate
themselves to other APs through channel switching or network
directed roaming.
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(a) Total saturation throughput vs. arrival rate

(b) Average saturation throughput vs. arrival rate

(c) Revenue vs. arrival rate

Fig. 4. The effect of the proposed algorithm in terms of improving saturation
throughput and revenue.
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