
User-side Flooding for Query Distribution in
Breadcrumbs-based Content-Oriented Network and

its Experimental Evaluation

Christophe Michard∗, Yosuke Tanigawa† and Hideki Tode‡

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,

Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599–8531, Japan

Email: ∗michard@com.cs.osakafu-u.ac.jp, {†tanigawa,‡tode}@cs.osakafu-u.ac.jp

Abstract—Recently, access loads on servers are increasing due
to larger size of content distribution via network. Breadcrumbs,
which guide queries to content caches, are designed to reduce
server loads and to form content oriented network autonomously
in cooperation with cached contents. However, this method only
searches guidance information on the nodes which are parts of the
query forwarding routes. Therefore, in this paper, we propose the
extensive searching control of guidance information called User-
side Flooding. Moreover, we implement the extensive control on
a real machine, and demonstrate its effectiveness by experiment
using the JPN25 topology.

I. INTRODUCTION

Recently, access loads on servers are increasing due to
larger size of content distribution via network. Breadcrumbs
(BC), which guide queries to content caches, are designed to
reduce server loads and to form content oriented network au-
tonomously in cooperation with cached contents. Specifically,
each router on a content download path registers guidance
information in order to allow later requests for the same
content to be guided in direction of the previously downloaded
content. However, this method only searches guidance infor-
mation on the nodes which are parts of the query forwarding
routes from the users to the corresponding servers. In this
paper, we propose the extensive searching control of guidance
information in BC method called User-side Flooding. Each
user requesting a content distributes searching queries on a
limited flooding area before transmitting the corresponding
query to the corresponding server. In addition, we implement
the extensive control on a real machine in which the JPN25
topology is constructed by linking several Linux Containers
together. Experimental results demonstrate its effectiveness.

II. BREADCRUMBS AND ACTIVE BREADCRUMBS

In Breadcrumbs method [1], each router on a content
download path makes a BC entry, which is a minimal infor-
mation allowing to route queries to a content cache, which has
previously been created at some user ends. Note that, due to
higher feasibility, we assume that only user end—for instance
edge router, ONU, STB or user PC—caches contents. When
a content query encounters a BC entry for the corresponding
content at a router on the way to the server by conventional IP
forwarding, the query is forwarded to its neighboring router, to
which the content was forwarded previously. This forwarding
log is specified in the BC entry. This query guidance, based
on BC, is done at each router until the query reaches a user
with the intended cache. Thus, through tracing a series of
BC entries, each query can follow the corresponding content
downloaded previously. This series of BC entries is defined as
BC-trail.

In order to guide more queries to caches, we have pro-
posed Active Breadcrumbs (ABC) [2]. In this method, users
possessing cached contents actively distribute ABC entries to
neighboring nodes in order to guide queries reaching nearby
routers. When a content query reaches a router with an ABC
entry for the corresponding content, the query is forwarded to
the user-cache specified in the ABC entry, based on IP routing.

III. DISTRIBUTION CONTROL OF QUERY AND GUIDANCE

INFORMATION

In BC method, queries search guidance information (BC)
on the routes between users and servers.

In contrast, we study distribution control of queries whose
distribution areas are expanded from lines to plain surfaces.
While ABC [2] corresponds to the distribution of guidance
information from user-side edge with cache, this distribution
is originated from users transmitting queries. In the following,
we describe this new distribution method.

A. User-side Flooding: Query distribution from users

In the method called User-side Flooding, each user re-
questing a content distributes searching queries on a limited
flooding area before transmitting the corresponding query. This
corresponds to (1) in Fig. 1.

Fig. 1. Generalized query distribution

The searching queries are distributed to neighboring nodes,
within a range of HF hops from the user. They are looking for
a cache or a BC. If a receiving node is caching the content or
has a valid BC, it sends a reply to the user in order to announce
itself. When the user receives this reply, it can send the content
request directly to this node. The first reply is chosen by the
user, others are then ignored for simplicity, though we can
easily change the policy.

14SB0086 (c) 2015 IEICE

2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT)

73

In the case no reply occurs, we designed a simple time out
delay in order to eventually send the original content request
towards the content server.

B. Design details of User-side Flooding

We assume that the user already knows the content server
location and that the content is not already cached by the user.
User-side Flooding occurs just before the transmission of the
content request to the server.

1) The user distributes searching queries to the neigh-
boring nodes within a range of HF hops (=TTL). At
this point, the user sets up a timer in preparation to
the case no reply occurs. A unique identifier needs
to be created, and information of the original content
request needs to be stored;

2) When a node receives a searching query, it checks
the existence of the content in its cache as well as
the existence of a valid BC corresponding to the
content. If either the content or a corresponding BC
is found, the node sends a searching reply to the
user, containing its routing information in addition
to the flooding id. If the node is a router, if neither
the content nor a BC is found and the query has not
reached HF hops (=TTL) yet, the searching query is
transferred to all the other adjacent nodes;

3) If the user receives a reply before the time out, a
special content request is sent directly to the replying
node. From the user to the replying node, the request
is simply forwarded by the intermediate nodes. This
content request contains the same information as
the original one, except for the routing information
needed to be transmitted to the replying node. The
timer and flooding information are deleted on the
user side. If another reply reaches the user, it will
be ignored;

4) When the special content request reaches the replying
node, cached content and BC presences are checked
again in case of invalidation. If invalidation occurred,
the content request is simply forwarded to the original
content server, checking the presence of content cache
or BC along the route;

5) If the time out expires before the reception of a reply,
the original content request is sent. The user deletes
the timer and the flooding information. In the case a
reply reaches the user after that, it will be ignored.

IV. EXPERIMENTAL EVALUATION OF THE USER-SIDE

FLOODING

We implemented User-side Flooding and compared it
to the classic Breadcrumbs method. We used a FUJITSU
PRIMERGY TX300 S6 server equipped with 24 Intel Xeon
X5675@3.07 GHz CPU units and 64 GB of DDR3 RAM mem-
ory for the experiment. We constructed the JPN25 topology as
shown in Fig. 2 by linking several Linux Containers (LXC)—
corresponding to routers, user terminals, content severs, and
one mapping server—together. This topology links 25 routers;
the maximum distance between users is 10 hops. The mapping
server is located in Tokyo-East (node 131). Each node is
provided with 50 Mbps network interfaces. Link latency due
to distance is not implemented. Each router is connected to a
LAN consisting of 2 users and 1 content server. Only the users
cached the contents (cache size = 50). BC lifetimes were set to
Tf = Tq = 30s. The content generation distribution followed a
Zipf law with α = 0.8. Users generated a request every second.

Fig. 2. JPN25 topology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

C
u
m

u
la

ti
v
e

fr
eq

u
en

cy

Hop count

Breadcrumbs

Flooding-1

Flooding-2

Flooding-3

Flooding-4

Fig. 3. Number of hops for a content request to reach its destination node

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
u
m

u
la

ti
v
e

fr
eq

u
en

cy

Hop count

Breadcrumbs

Flooding-1

Flooding-2

Flooding-3

Flooding-4

Fig. 4. Number of hops required to transfer the content to the requesting
user from the server or the cache node

Each content server registered 100 contents, setting the total
number of contents to 2500. Content size was fixed to 10 KB.
The duration of the experiment was set to 300 seconds. As for
User-side Flooding, we varied HF from 1 to 4 hops, and the
time out was set to 50 ms.

We measured the number of hops needed for a content
request to reach the node containing the content as shown in
Fig. 3 and Table I, and the number of hops needed for a content

14SB0086 (c) 2015 IEICE

2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT)

74

TABLE I. NUMBER OF HOPS FOR A CONTENT REQUEST TO REACH ITS

DESTINATION NODE

Proposal min mean max variance

Breadcrumbs 0 4.75096 18 339672
Flooding-1 0 4.5685 19 314082
Flooding-2 0 4.58306 19 316086
Flooding-3 0 4.01056 17 242050
Flooding-4 0 3.86897 16 225261

TABLE II. NUMBER OF HOPS REQUIRED TO TRANSFER THE CONTENT

TO THE REQUESTING USER FROM THE SERVER OR THE CACHE NODE

Proposal min mean max variance

Breadcrumbs 0 4.22445 10 268558
Flooding-1 0 4.04292 10 245972
Flooding-2 0 4.05329 10 247235
Flooding-3 0 3.70897 10 207014
Flooding-4 0 3.67056 10 202750

to be transferred from the server or the cache node to the user
as shown in Fig. 4 and Table II. We also measured for each user
how many times our proposal successfully found the content
in a cache or a valid BC as shown in Table III, and how many
content requests were sent by the users, as shown in Table IV,
in order to appreciate the previous table (no request is sent if
the content is already cached in the requesting node).

Fig. 3 shows that when HF = 1 (Flooding-1) or HF = 2

(Flooding-2), the User-side Flooding method does not show
significant improvement compared to the classic Breadcrumbs
one. About 5 more percents of requests reached the destination
node within 2 hops in these cases. By contrast, HF = 3

(Flooding-3) or HF = 4 (Flooding-4) proposals show signif-
icantly improved results. Almost half of the requests reached
their destination within 3 hops in the Flooding-3 (48%) and
Flooding-4 (46%) cases, compared to the 31% of the Bread-
crumbs method. If we consider a range of 4 hops, Flooding-4
shows even better results (65%) compared to Flooding-3 (60%)
and Breadcrumbs (45%).

Fig. 4 shows similar results. Flooding-1 and Flooding-2
show little improvement within a short range. Since users
are connected via LAN networks and cache is disabled in
the routers, no content can be transmitted in exactly 2 hops.
Almost half of the contents are downloaded within 3 hops of
the requesting nodes in the Flooding-3 (49%) and Flooding-
4 (47%) cases, compared to the 34% of the Breadcrumbs
method. This is huge, since 3 hops means that contents
are retrieved at the next location on the topology (user –
router – router – user). Within 4 hops, the Flooding-3 (62%)
and Flooding-4 (66%) proposals still prove significant results
compared to the Breadcrumbs (51%) one.

Table I shows that content requests reach their destination
node in about 4.01 hops in the Flooding-3 proposal and
3.87 hops in the Flooding-4 proposal, compared to 4.75 hops
in the Breadcrumbs method, which is a great improvement.
Table II shows that contents are downloaded at a distance of
about 3.71 hops in the Flooding-3 proposal and 3.67 hops in
the Flooding-4 proposal, compared to 4.22 hops of the user
in the Breadcrumbs method. In both cases, the Flooding-1

TABLE III. USER-SIDE FLOODING: NUMBER OF REQUESTS WHICH

FOUND A CACHE OR A VALID BC

Proposal min mean max variance

Flooding-1 12 20.36 29 20295
Flooding-2 14 20.28 29 20138.2
Flooding-3 50 75.1 106 276225
Flooding-4 85 112.1 147 615556

TABLE IV. USER-SIDE FLOODING: NUMBER OF CONTENT REQUESTS

SENT

Proposal min mean max variance

Flooding-1 230 251.2 273 3.0919e+06
Flooding-2 235 251.3 270 3.09436e+06
Flooding-3 231 249.18 263 3.04239e+06
Flooding-4 234 250.62 268 3.07766e+06

and Flooding-2 methods show similar results and only little
improvement compared to the Breadcrumbs method.

Tables III and IV show that out of an average 251 User-side
Flooding requests, only 20 ones (8%) found a cache or a valid
BC in both the Flooding-1 and Flooding-2 cases. Improvement
can be observed in the Flooding-3 one, where 75 requests
out of 249 (30%) were successful on average. The Flooding-4
proposal shows the best results with 112 requests out of 251
(45%) which found the information.

Both Flooding-3 and Flooding-4 show great results, the
latter strictly proving a little bit superior. Nevertheless, we
should be careful. Increasing HF implies more network traffic
and consequently increases the CPU loads of the routers, which
was observed during these experiments. At HF = 5 (not
showed here), the results showed almost no improvement for
a sudden increase of the CPU loads, which is harmful for
the network performance. Flooding-3 showed almost no load
for great results and little traffic. This would be the preferred
choice for networks with little resources.

V. CONCLUSION

We proposed a method to allow the users to search contents
actively on promiscuous nodes. We showed its effectiveness by
comparing it to the Breadcrumbs method, and demonstrated
how the distribution range HF has a positive impact on the
results.

ACKNOWLEDGMENT

This research is partly supported by the National Institute
of Information and Communications Technology, Japan.

REFERENCES

[1] E. J. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort
content location in cache networks,” Proc. IEEE INFOCOM 2009, pp.
2631–2635, Apr. 2009.

[2] M. Kakida, Y. Tanigawa, and H. Tode, “Active Breadcrumbs: Adaptive
Distribution of In-network Guidance Information for Content-Oriented
Networks,” IEICE Transaction on Communications, vol. E96-B, no. 7,
pp. 1670–1679, July 2013.

14SB0086 (c) 2015 IEICE

2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT)

75

