
An Open Source Environment for Capturing IP
Traffic

Maciej Słomczynski
Poznan University of Technology

Poznan, Poland
Email: maciej@slomczynski.pl

Mariusz Głąbowski
Poznan University of Technology

Poznan, Poland
Email: mariusz.glabowski@put.poznan.pl

Maciej Sobieraj
Poznan University of Technology

Poznan, Poland
Email: maciej.sobieraj@put.poznan.pl

Abstract—This article presents a developed environment to
enable collecting data providing detailed information about
traffic in networks based on the IP protocol (Internet Protocol).
Real traffic generated by individual users in a network within
the domain of an Internet service provider is examined. The
developed environment makes it possible to obtain information
at the flow level and at the packet level and provides a solution
using free software.

I. INTRODUCTION

We are currently witnessing not only an upsurge of services
based on the IP protocol, but also the further expansion of
communication between not only humans but also between de-
vices (Internet of Things) [1]–[4]. These phenomena have lead
to significant changes in the characteristics of traffic generated
by traffic sources (people, things) that should be taken into
consideration as early as the designing and dimensioning stage
in the network development, primarily in advanced IP access
networks settings. A development of specific, efficient and ex-
act methods for dimensioning of these networks requires first
of all accurate insight into the character of transmitted traffic.
Information about the parameters of traffic generated by users,
as well as information about the quality parameters (quality
of service, quality of experience) that are expected by them,
make appropriate mapping of the resources demanded at the
packet level into the resources demanded at the session (call)
level possible, and, in consequence, provide an opportunity to
work out appropriate methods for network dimensioning using
the approach based on the idea of the so-called equivalent
bandwidth [5], [6].

In order to understand fully the character of traffic generated
in modern IP access networks, thus making it possible to de-
termine values of equivalent resources in the future, the article
presents the developed environment that allows researchers to
obtain extensive information about the structure of transmitted
traffic streams.

The remaining sections of the article are organised as
follows. Section II presents the basic assumptions and the
architecture of the controlled environment that captures IP
traffic. Section III discusses possibilities for using the Net-
Flow protocol to retrieve information about packet flows of
transmitted traffic [7]. This section also proposes a software
and procedures suitable for the purpose that make capturing,
recording and storage of information obtained using NetFlow

possible. It also provides the reader with an evaluation of
the amount of captured data depending on their range of
extraction. Section IV concludes the paper.

II. ASSUMPTIONS AND ARCHITECTURE OF THE
ENVIRONMENT FOR CAPTURING IP TRAFFIC

In the initial stage of the development of the environment
for collecting information about traffic generated in IP access
networks the assumption was made that only traffic generated
by individual end users would be analysed. This traffic will
be thus involved in all types of service available on the
Internet such as: WWW, e-mail, VoIP, Video, etc.. Traffic
generated by system servers that service other Internet users
will be excluded from the study, as well as traffic generated by
applications monitoring/managing the network operation and
data archiving systems.

The initial assumption in the study was that in the de-
veloped environment there were two levels of measurement
(capturing/retrieving information). The first deals with collect-
ing information about streams from an edge router and the
backbone network (session level), the other being restricted
to collecting information at the packet level as a result of
capturing all packets and tagged information within individual
sessions (packet level).

A general diagram of the network under investigation is
shown in Figure 1. The main element of the network, from
the point of view of measurements to be performed, is a server
with Linux operating system, Debian Squeeze distribution, that
acts as an edge router (denoted in Figure 1 as the Linux–
router). This server is also used as a router BGP [8], bandwidth
limiting for some users and translating addresses (NAT –
Network Address Translation) for most of users. In addition,
for the sole purpose of the study, the router can also perform
the function of the so-called Flow exporter, i.e. a device
that collects and transmits information about particular flows
(sessions). A dedicated server is introduced to the proposed
environment, denoted in Figure 1 as the Linux-collector, which
collecting data generated by "flow exporter". In order to
relieve the edge router from managing the function of the
"flow exporter", the Linux-collector sever can perform both
the managing function designed to capture information about
transmitted flows and the function of a device that collects
information of captured flows.



Fig. 1. Diagram of the network under investigation

The developed system for retrieving data offers a possibility
to analyse network traffic to the level of a single packet,
as well as assign each of transmitted packets to the flow
generated by individual users of the network. Thus obtained
data, following a long-term and periodic analyses, will allow
the researcher to generate statistical flow patterns generated
by demands of particular services. Patterns worked out in
the process will include information on the parameters of the
access link through which they have been introduced into the
network.

Future studies will make it possible to go deeper into the
structure of real traffic in the network in terms of its assign-
ment to individual types of services. With future investigations
that will be performed on periodic basis, a possibility will
arise to monitor and observe trends and changes in bandwidth
allocations for individual services that occur within time.
Monitoring of trends in changes in traffic distribution and of
the entirety of the bandwidth will make it possible to predict
and anticipate bandwidth demand in Internet access networks
(bandwidth demand forecast).

III. TOOLS FOR IP TRAFFIC CAPTURING

A. Data stream information capturing at the session level

To retrieve information about transmitted data flows (exe-
cution of the function "Flow exporter") the NetFlow proto-
col (in its 5 pro version) is proposed [7]. This protocol is
implemented in most network solutions. In Figure 2 shown
NetFlow generation scheme. It should be noted, however, that
the implementation of this protocol in devices manufactured

Fig. 2. Diagram showing NetFlow data generation

by a number of producers (e.g. Cisco) generate only sampling
data in order to decrease the load of these devices. Depending
on a version of the operating system employed in network
devices, there is often a possibility to introduce changes in
the frequency of sampling.

However, using sampling data collected only within a
predefined time interval results in a deliberate exclusion of
information about a great number of traffic streams. In order
to capture information about all flows, an application of the
fprobe program, in its most common version, i.e. 1.1-7.2, was
proposed in the initial stage of the study. The analysis of data
retrieved as a result of the application of this program showed,



Fig. 3. Network measurement diagram

however, that it generated a constant value of time in the field
"SysUptime", included the NetFlow message header [7]. This,
in consequence, made it impossible to unequivocally place the
transmitted stream on the time axis. The same shortcoming in
the distribution evaluation also occurred in the latest fprobe
program, i.e. 1.1-7.3.

A successful solution to the problem was finally found in
the application of the software packet softflowd in its 0.9.9
version (the 0.9.8 version proved to have been unstable).

Data retrieved as a result of the application of the softflowd
program (flow exporter functions) include information about
the source and target IP addresses, as well as specify source
and target numbers of ports used for each of the transmitted
stream. It should be noted, however, that the retrieval of
such detailed data by softflowd generates heavy load for the
server processor that performs its function as an edge router.
Considering the critical functions assigned to the edge router
important in the overall operability of the operator, such as
translation of addresses and limiting bit rate for individual
users, it is impractical to allow the load of the sever processor
to increase up to 100%. This would effect in a drastic reduction
of stability of the network. To maintain full operability of a
monitored network, the tasks related to user data transmission,
as well as those related to the retrieval of information about
these data, were divided between particular processor cores in
the "Linux-router" edge router.

The Flow-capture program from the package Flow-tools
[9] was used to perform the functions related to collecting
data retrieved by NetFlow, i.e. the Flow collector function.
To decrease the load of the main server in the network that
performed the function of the edge router, the Flow collector
function was activated and ran on a server specially dedicated
for the purpose. This server can also preform the function
of the flow exporter and of a device that can capture the
entirety of traffic (the measurement level is discussed in the
following section of the article). Figure 3 shows developed
data collection scheme.

It should not be forgotten though that in the considered

TABLE I
COMPARISON OF DATABASE ENGINES IN IMPORTING NetFlow DATA

NetFlow data volume [MB] number of flows (records)
NetFlow probe 10.4 837623
database engine data base volume [MB] time loading to database [s]

MyISMA 84.9 143.81
innoDB 127.6 268.96

architecture all NetFlow data, as well as all headers of analysed
packets, come from one source. In the case of the instance of
a number of different NetFlow sources and packet headers,
an important element in the cumulative analysis would be to
synchronise clocks in such systems to maintain coherence of
retrieved data.

B. Storage of information about captured data streams

In order to ensure the possibility of storing large amount
of information about captured streams and of making reliable
access to them easy, a decision was made to use MySQL
database for storing captured data. Two database engines most
frequently used in MySQL were considered: MyISMA and
innoDB. Despite certain theoretical prerogatives that indicated
innoDB as the most appropriate engine, it was the MyISMA
engine that turned out to be faster in importing data into
MySQL by 47% and, from the point of view of the ultimate
capacity of the database, was more efficient by 33%. Results
are shown in Table I.

The Linux–collector server used for the purpose of the study
was equipped with two four-core 2.50GHz. processors. The
server was also equipped with SSD (solid-state drive) disks
combined in RAID 0 (Redundant Array of Independent Disks)
using hardware matrix controller. This resulted in virtually
no delays in the system caused by the waiting time for an
input/output operation during the data load into the database.
In practice, this means that the critical point was a single
core of the processor used by a specific process of MySQL.
To accelerate the input process of the total NetFlow data
into the database, parallel data load into the database using
a number of scripts was used. This did not accelerate the
process of data recording of a single process, but made the
cumulative throughput to be significantly increased. Every data
recording process by the MySQL database imposed load on
one processor core at about 100%. At the same time, the
flow-export program itself (from the package flow-tools) that
serviced NetFlow data recording to MySQL, occupied about
15% of another core.

To identify and determine necessary resources, a two-day
pilot test was conducted. Table II shows the amount of data
with which we are dealing. It is scaled in the amount of data
generated for each day for each 100 Mb transmitted traffic

C. Capturing of information about data streams at the packet
level

To capture data at the packet level, the measurement scheme
prepared prior to the study and presented in Fig. 3 was used.
The main elements of this scheme are the Linux-collector



TABLE II
A JUXTAPOSITION OF THE AMOUNT OF DATA GENERATED BY NetFlow

description flow database disk space NetFlow disk space loading to database time
unit flows/day/100Mb GB/day/100Mb GB/day/100Mb hour/day/100Mb

value 171555292 16.96 2.0 7.88

TABLE III
VOLUME OF DATA OBTAINED BY TCPDUMP

Parameter Volume Unit
Average amount of data – headers only 105898 kB/min/100Mb

Average amount of date – whole packets 879588 kB/min/100Mb

dedicated server and the port monitor function activated on the
main core switch of the operator. The port monitor function
is based on a duplication of incoming and outcoming traffic
from the port of the switch under scrutiny. Traffic is directed
to an indicated port to which a monitoring device is being
connected. The port monitor function did not generate any
observable load for the switch.

Tcpdump [10] was chosen to capture data. Tcpdump is a
standard package in most Linux distributions. Capturing all
information involves generation of a large number of data. This
caused problems with capturing, storage and further analysis
of the data. Due to the sheer amount of information and the
confidentiality of data, the content transmitted by layer four
protocols in the OSI model (Open Systems Interconnection)
was decided to be rejected, while this included TCP (Trans-
mission Control Protocol ) and UDP (User Datagram Protocol)
protocols.

The proposed tcpdump tool makes it possible to get a packet
capture in its demanded length only. To define an appropriate
length for packets that are necessary for capturing it was
necessary then to determine the maximum available length
used for the packet header. A header of the second layer in
the OSI model has the length of 14B. The IP header can have
up till 24B. The UDP header has a fixed length of 8B and is
always shorter than the TCP header. The first four bits of the
twelfth octet of the TCP header define its length. The value
of the first four bits of the twelfth octet multiplied by four
makes the length of the TCP header expressed in bytes. Thus,
the maximum length of the TCP header is 60B. Summing
up the above calculations - in order not to omit any crucial
data it was necessary to capture the first 96B of each of the
TCP packet and the first 46B of every UDP packet within the
second layer of the OSI model.

By the a two-day pilot test all transmitted traffic was
captured as well as traffic in packets truncated after the first
96B. As shown in Table III after the truncation of packets,
there were 12% remaining data relative to the total traffic.

In the study, another method for capturing TCP, UDP and
remaining traffic was also developed. As a result, it was
possible to capture only the first 46B from the UDP header.
As shown in Table IV this effected in a decrease in the volume
(size) of captured data to 7% as compared to the total traffic.

TABLE IV
VOLUME OF DATA OBTAINED BY TCPDUMP WITH CONSTRAINED UDP

PACKET CAPTURING

Parameter Volume Unit
Average amount of data – TCP headers 53066 kB/min/100Mb
Average amount of data – UDP headers 4982 kB/min/100Mb
Average amount of data – other headers 371 kB/min/100Mb

Average amount of data – all headers 58420 kB/min/100Mb
Average amount of data – whole packets 752885 kB/min/100Mb

The samples from Table III and IV were taken in some other
period, which resulted in differences in the average numbers
of data for 100Mb.

IV. CONCLUSION

This article presents the architecture, assumptions and core
elements of an environment for collecting data on the prop-
erties of traffic transmitted in present-day IP networks. The
application of the NetFlow protocol makes it possible to
obtain a solution in which the demand for resources, both
disk resources and computational resources, is small enough
to be used in real operator’s networks without any detrimental
influence on their efficiency.

The information about the traffic structure at the individual
packet level and the individual stream level obtained as a
result of further measurements will allow the average size of
resources demanded by traffic streams of identifiable class of
services to be determined. This, in turn, will make it possible
to develop simple engineering methods (that make use of the
concept of the equivalent bandwidth) for dimensioning the
multiservice IP network.

ACKNOWLEDGMENT

The presented work has been funded by the Polish Ministry
of Science and Higher Education within the status activity task
"Struktura, analiza i projektowanie nowoczesnych systemów
komutacyjnych i sieci telekomunikacyjnych" in 2015.

REFERENCES

[1] M. Grajzer, T. Zernicki, and M. Głąbowski, “Nd++ – an
extended IPv6 neighbor discovery protocol for enhanced stateless
address autoconfiguration in MANETs,” International Journal of
Communication Systems, vol. 27, no. 10, pp. 2269–2288, 2014.
[Online]. Available: http://dx.doi.org/10.1002/dac.2472

[2] M. Grajzer and M. Głąbowski, “Performance evaluation of neighbor
discovery++ protocol for the provisioning of self-configuration services
in ipv6 mobile ad hoc networks,” in Telecommunications Network
Strategy and Planning Symposium (Networks), 2014 16th International,
Sept 2014, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=6959266

[3] D. Lake, A. Rayes, and M. Morrow, “The Internet of Things,” in The
Internet Protocol Journal, vol. 15, no. 3. Chief Technology Office,
Cisco Systems, Inc., September 2012.



[4] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, 2012.

[5] A. Pras, L. Nieuwenhuis, R. M. van de, and M. Mandjes,
“Dimensioning network links: A new look at equivalent bandwidth,”
IEEE Network, vol. 23, no. 2, pp. 5–10, March 2009. [Online].
Available: http://doc.utwente.nl/65443/

[6] N. L. S. Fonseca, G. S. Mayor, and C. A. V. Neto, “On the equivalent
bandwidth of self-similar sources,” ACM Trans. Model. Comput. Simul.,
vol. 10, no. 2, pp. 104–124, 2000.

[7] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC

3954 (Informational), Internet Engineering Task Force, Oct. 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3954.txt

[8] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4
(BGP-4),” RFC 4271 (Draft Standard), Internet Engineering Task Force,
Jan. 2006, updated by RFCs 6286, 6608, 6793. [Online]. Available:
http://www.ietf.org/rfc/rfc4271.txt

[9] “flow-tools - Open source program to collect, send, process,
and generate reports from NetFlow data.” [Online]. Available:
https://code.google.com/p/flow-tools/

[10] “TCPDUMP - Open source command line packet analyzer.” [Online].
Available: http://www.tcpdump.org/


