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Abstract—AMR (Automatic Meter Reading) system is expected
to be used for real time load monitoring to optimize power
generation and energy efficiency. Recently, Batra et al. propose a
technique to estimate consumer’s lifestyle from a real-time load
profile. In order to overcome this issue, BLH (Battery-based
Load Hiding) algorithms are proposed to obfuscate an actual
load profile by charging and discharging. Although such BLH
algorithms have already been studied, it is important to consider
multiple households case where one battery is shared among them
because a battery is very expensive. In this paper, we propose a
new BLH algorithm for two households as an example to consider
monetary fairness. In our scheme, the core unit calculates the
difference between the charged amount and discharged one. If
the difference is bigger than the pre-defined threshold (monetary
unfair occurs), the disadvantageous household is given priority
to discharge the battery and the other household should charge
to achieve monetary fairness. The efficiency of our scheme
is demonstrated through the computer simulation with a real
dataset.

I. INTRODUCTION

In recent years, smart meters have gained much popularly
with growing support from the electric power company and
governments. However, smart meters pose a substantial threat
to the privacy of individuals in their own homes [1]. Smart
meters use solid state measurement circuits that can record
the load profile every second or minute. Combined with NILM
(Non-Intrusive Load Monitoring), a load value measured by
a smart meter may timely reveal what appliances are used
[2]–[4]. NILM is a technique for analyzing a household’s net
electric load profile in order to deduce what electric appliances
are used. The most of NILM techniques are to detect edges
in a load profile [5]–[7]. Batra et al. publish an open source
toolkit of NILM named NILMTK [8]. However, NILM gives
rise to serious user privacy concerns. Multiple studies have
shown that smart meters are vulnerable to an attack that could
leak fine grained usage data to third parties, e.g., an electric
power industry and/or a data center [9], [10]. Recently, a BLH
(Battery-based Load Hiding) technique is proposed to avoid
the information leakage by NILM [11]–[15]. The fundamental
concept of BLH is that a battery is used to store and supply
power to home devices at particularly times to hide appliance
loads. In the BE (Best Effort) [11], the core unit generally
aims to flatten the metered load, where the core unit controls
the battery based on the demand load in order to control the

metered load. However, BE does not consider the case that
the battery is almost empty or full. In the NILL (Non-Intrusive
Load Leveling) [12], the core unit generally aims to flatten the
metered load and controls the residual energy of the battery
in order to continue a BLH. However, NILL discloses the
true energy consumption when the battery is almost empty or
full. In the SF (Stepping Framework) [13], instead of trying
to flatten the metered load, the core unit chooses a metered
load from a set of predefined values according to the current
energy consumption level of the appliances.

Although many BLH algorithms have been studied in the
literature, most of them do not consider to execute BLH
against multiple households with one battery. Considering the
case for multiple households is important because a battery
for household use is very expensive to install. Vilardebo et
al. propose a BLH scheme for multiple households, however,
they do not consider monetary fairness [14]. That is, electric
price that each household pays is higher than the price that
they really use. In this paper, we propose a BLH scheme for
two households with one battery where monetary fairness is
taken into account. Our scheme achieves monetary fairness by
using three modes: the stabilization mode, fairness mode, and
normal mode. The core unit chooses based on monetary loss
and residual energy on the battery. In the stabilization mode,
the core unit stables the residual energy in order to avoid
the situation that BLH cannot be executed. In the fairness
mode, the household that has charged too much discharges
and the other charges in order to solve monetary unfairness.
In the normal mode, the core unit calculates each household’s
metered load at time t against every possible case and chooses
the case where the residual energy approaches almost the half
of battery capacity.

We show the efficiency of our scheme through computer
simulation. The evaluation metrics are maximum monetary
loss and information leakage during simulation period. We
use Wiki-Energy [16] which is a real electric loads dataset to
obtain reasonable outcome.

The remainder of this paper is organized as follows. Section
II provides the related work about BLH algorithms. We detail
our scheme and give discussion in terms of pros and cons in
Section III. Section IV presents experimental results of our
scheme using real data. We conclude the paper in Section V.



II. RELATED WORK

A. Privacy Preserving for Smart Meter Users by Using BLH
Scheme

To protect a privacy for smart meter users, many researchers
have proposed BLH algorithms considering various constraints
on the battery such as capacity to minimize the amount
of information leakage [11]–[15]. In BLH algorithm, the
operation system controls the battery based on the demand
load and previous time energy consumption observed by the
smart meter (the metered load) in order to control the currently
metered load.

B. How BLH Algorithms React

Current BLH algorithms generally aim to flatten the metered
load. The main difference among these algorithms is how to
react when the residual energy is too low or too high. In
the BE [11], when the energy level of the battery reaches
the minimum level or the maximum level, the core unit
determines that the battery has to be charged or discharged
at the maximum rate. In the NILL [12], instead of charging
or discharging the battery at the maximum rate, the core unit
chooses a charging/discharging rate with respect to the energy
consumption of appliances. Yang et al. analyze the above
two algorithms and show that these two algorithms disclose
the true energy consumption when the battery is too low or
too high and propose a SF-LS2 [13]. In SF-LS2 , instead of
trying to maintain a constant load, the core unit can choose a
load to be seen by the smart meter from a set of predefined
values according to the current energy consumption level of
the appliances. Yang et al. verify tradeoff between the smart
meter data privacy and the electricity bill and propose an
online control algorithm that can optimally control the battery
to protect the smart meter data privacy and cut down the
electricity bill [15]. Vilardebo et al. propose a BLH scheme
[14] that operates over multiple users by defining privacy-
power function.

C. Problem of Conventional BLH Algorithms

Although there are many BLH algorithms, most of algo-
rithms do not consider using one battery for multiple house-
holds. Although Vilardebo et al. propose a BLH scheme for
multiple households with a single battery, it does not consider
monetary fairness [14]. Here, monetary fairness denotes that
the charged amount must be same as the discharged amount
for each household. However, it is difficult to achieve the
monetary fairness because of two constraints on the battery.
First, the battery has a limit on charge and discharge rate.
The core unit that controls the battery needs to choose
appropriately which user should charge and discharge the
battery based on the rate. Second, the battery has a capacity.
If the residual energy is almost full or empty, the core unit
cannot appropriately execute BLH for collecting electric price
between users.
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Fig. 1. The model of our BLH scheme.

TABLE I
NOTATIONS OF OUR SCHEME.

Parameters Definition

i Household (i = 1 or 2)
β Quantization width
rresidual(t) Ratio of residual energy to the battery capacity at time

t [%]
li(t) Monetary loss caused by charging and discharging

within household i
lth Threshold of li(t)
di(t) Demand load in household i
si(t) Charging signal. If si(t) = 1, the core unit quantizes

household i’s load by charging, and vice versa
ei(t) Metered load (the load after BLH) in household i at

time t

III. PROPOSED SCHEME

Here, we propose a monetary fair BLH scheme for two
households with one battery because even if there are more
than three households, controls of them are based on the
proposal scheme. Fig.1 shows the model of our BLH scheme.
The core unit calculates each household’s demand load di(t)
and decides each household’s metered load ei(t), where the
metered load is read by the smart meter. After deciding ei(t),
the core unit controls the battery in order to output ei(t)
to each smart meter. After that the core unit sends each
smart meter to ei(t). When each smart meter receives ei(t),
each smart meter sends ei(t) to the concentrator and the
concentrator sends ei(t) to the electric company.

We define the threshold lth that determines upper bound of
the instantaneous monetary unfairness. When the difference
between the charged amount and discharged one exceeds the
predefined threshold, priority to one household is given to
discharge (or charge) the battery and the other household
should charges (or discharges) to achieve monetary fairness.
Our scheme consists of three modes: stabilization, fairness,
and normal mode. The control unit changes the mode based
on the residual energy. When the residual energy is almost
empty or full, the core unit transits to the stabilization mode



Algorithm 1 Deciding mode
1: Input rresidual(t− 1)
2: if rresidual(t− 1) is almost empty ∪ rresidual(t− 1) is

almost full then
3: mode← Stabilization
4: else if max(l1(t), l2(t)) ≥ lth then
5: mode← Fairness
6: else
7: mode← Normal
8: end if
9: Return mode

mode which is based on the state-of-the-art BLH scheme SF-
LS2 [13] to avoid the situation that BLH cannot be executed.
If one household charges too much, the core unit transits to
the fairness mode to solve monetary unfairness. Otherwise,
the core unit executes the normal mode so that the residual
energy approaches almost the half of its capacity. After the
core unit decides its mode, it decides each household’s metered
load ei(t) with a quantization band β. β is a bandwidth that
the battery can quantize household i’s demand load di(t). β
indicates how coarsely it hides a demand load and it is given
by the battery capacity, charging rate, and discharging rate,
where charging rate denotes how much energy the battery can
charge within a time unit. Finally, the core unit charges or
discharges to execute BLH. In the following we explain the
three modes in detail.

A. Three Modes of Our BLH Algorithm

1) Deciding Mode: Algorithm 1 shows how the core unit
changes its state. First, if the residual energy is almost empty
(≤ 20%) or full (≥ 90%), we choose the stabilization mode
because stabilizing a residual energy and continuing BLH is
most important. Second, after checking the residual energy, if
the difference between charged and discharged amount energy
within household is more than the threshold, the control unit
transits to the fairness mode to achieve monetary fairness.
Otherwise, the control unit transits to the normal mode.

2) Stabilization Mode: Algorithm 2 shows how the stabi-
lization mode works. In the stabilization mode, each household
charges (s1(t) ← 1, s2(t) ← 1) when the residual energy is
almost empty (under 20%). On the other hand, each household
discharges (s1(t)← 0, s2(t)← 0) when the residual energy is
almost full (over 90%). Here, si(t) denotes whether household
i hides its load by charging or discharging at time t. That is,
if si(t)← 1, it means that the core unit let household i charge
while if si(t) ← 0, it means that the core unit let household
i discharge. Then, the core unit calculates a target quantized
load ei(t) for each household according to si(t). Here, we use
β′ as β

2 in order to control both households’ metered loads
simultaneously.

3) Fairness Mode: Algorithm 3 shows how the fairness
mode works. In the fairness mode, the core unit lets the house-
hold that has charged too much i.e., li(t− 1) ≥ lth discharge
and lets the other charge to solve monetary unfairness, where

Algorithm 2 Stabilization mode
1: Input rresidual(t− 1)
2: for i ∈ 1 : 2 do
3: if rresidual(t− 1) ≤ 20% then
4: s1(t)← 1
5: s2(t)← 1
6: else if rresidual(t− 1) ≥ 90% then
7: s1(t)← 0
8: s2(t)← 0
9: end if

10: β′ ← β
2

11: if si(t) = 1 then
12: ei(t)←

⌈
di(t)
β′

⌉
β′

13: else if di(t) mod β ̸= 0 then
14: ei(t)←

⌊
di(t)
β′

⌋
β′

15: else
16: ei(t)← (di(t)

β′ − 1)β′

17: end if
18: end for
19: Return e1(t) and e2(t)

Algorithm 3 Fairness mode
1: Input l1(t− 1) and l2(t− 1)
2: if l1(t− 1) ≤ l2(t− 1) then
3: s1(t)← 1
4: s2(t)← 0
5: else
6: s1(t)← 0
7: s2(t)← 1
8: end if
9: for i ∈ 1 : 2 do

10: if si(t) = 1 then
11: ei(t)←

⌈
di(t)
β

⌉
β

12: else if di(t) mod β ̸= 0 then
13: ei(t)←

⌊
di(t)
β

⌋
β

14: else
15: ei(t)← (di(t)

β − 1)β
16: end if
17: end for
18: Return e1(t) and e2(t)

li(t) denotes the difference between charged and discharged
amount energy within household at time t. Then, the core unit
calculates a target quantized load ei(t) for each household
according to si(t).

4) Normal Mode: Algorithm 4 shows how the normal
mode works. In the normal mode, the core unit calculates
each household’s metered load at time t against every possi-
ble cases, i.e, {s1(t), s2(t)} in {{0, 0}, {0, 1}, {1, 0}, {1, 1}}.
Then, the core unit chooses the case where the residual energy
most approaches 55%.



Algorithm 4 Normal mode
1: for {s1(t), s2(t)} ∈ {{0, 0}, {0, 1}, {1, 0}, {1, 1}} do
2: for i ∈ 1 : 2 do
3: if si(t) = 1 then
4: ei,si(t)(t)←

⌈
di(t)
β

⌉
β

5: else if di(t) mod β ̸= 0 then
6: ei,si(t)(t)←

⌊
di(t)
β

⌋
β

7: else
8: ei,si(t)(t)← (di(t)

β − 1)β
9: end if

10: store ei,si(t)(t)
11: end for
12: if the combination of e1,s1(t)(t) and e2,s2(t)(t) more

approaches rresidual(t) = 55% then
13: e1(t)← e1,s1(t)(t)
14: e2(t)← e1,s2(t)(t)
15: end if
16: end for
17: Return e1(t) and e2(t)

B. Discussion

1) Initial Cost to Introduce BLH: A 1 kWh Li-ion battery
costs at least US$ 1,200 [17]. By using our scheme and sharing
one battery with two households, the installation cost to the
battery for each household can be reduced.

2) Limitation of Our Scheme: In our scheme, monetary
fairness between two households can be reduced by the
fairness mode. However, our scheme cannot exactly get rid
of monetary unfairness between households even if the core
unit sets lth to 0.

3) Privacy Concern in Our Scheme: In our scheme, third
parties cannot estimate both household’s demand loads be-
cause they cannot know the residual energy on real time.
However, one household may estimate the other household’s
demand load in real time if each household knows its own
demand load, metered load, and the residual energy on real
time. Household 1 can calculate the household 2’s load de-
mand d2(t) as follows: d2(t) = e2(t) + (e1(t) − d1(t)) −
Cmax ∗ (rresidual(t) − rresidual(t − 1)), where Cmax means
the maximum capacity of the battery. To satisfy the privacy
of households using our scheme, both households must have
cooperative relationships.

4) The Case for over Three Households: Our scheme is
able to extend for a case with more than three households.
This is because our scheme can choose the combination of
two households which has charged the most and discharged the
most. Even if there are more than three households, the core
unit can control that two households by the fairness mode and
the rest of households by the normal mode. However, the more
households control with one battery, the more information
leakage is increased because the battery has a capacity and
relative quantization width for each household is reduced.

TABLE II
NOTATION USED IN OUR SIMULATION.

Parameters Definition

Dataset Wiki-Energy Dataset [16]
Interval between measurements 1 minute
Simulation duration 30 Days
Maximum battery capacity Cmax 1.0 [kWh]
Quantization width β 1.0 [kW]
Electric rate 16.341 [cent/kWh]
Threshold lth 1, 5, 10, 25, and ∞ [cent]

TABLE III
MAXIMUM INSTANTANEOUS LOSS VERSUS lth .

Threshold Maximum Loss [cent]
Average Best Worst

lth = 1 3.41 1.21 3.54
lth = 5 5.26 5.19 7.08
lth = 10 10.3 10.2 10.3
lth = 25 25.3 25.2 25.3
lth = ∞ 2.44 ×103 65.3 6.78 ×103

IV. EXPERIMENTAL RESULT

A. Simulation Model

We evaluate our scheme in terms of the loss and mutual
information. Table II shows simulation parameters. We use a
one-minute resolution datasets named Wiki-Energy [16]. This
dataset includes electricity data measured every one-minute
in over 100 households from 2012 to Apr. 2014. We use the
electricity data in the dataset measured for one month in Apr.
2014. We pick every combination of two households from
randomly sampled 100 households in the dataset. We assume
a battery whose maximum capacity Cmax is 1.0 kWh and its
charging and discharging rate β is 1.0 kW, which means that
the battery can be depleted and fully charged for an hour. We
consider the case where both the households utilize the same
flat electric rate with 16.341 [cent/kWh]. This electric rate is
cited from the one actually used in Pacific Gas and Electric
Company [18]. We compare our scheme with SF-LS2 with the
same battery capacity. We vary lth as lth = 1, 5, 10, 25, and
∞ [cent].

Mutual information indicates the ratio of information that
is able to estimate the demand load by observing the metered
load. Mutual information between two variables ei(t) and
di(t) measures the information that ei(t) and di(t) share: it
uncertain ei(t) gives the information about di(t). For example,
if ei(t) and di(t) are totally independent, then knowing ei(t)
does not give any information about di(t), so their mutual
information is zero [13].

B. Comparison of Monetary Fairness

Table III shows the maximum loss caused by our scheme
for each lth. In Table III, Average, Best, and Worst indicate
the averaged, minimum, and maximum of the instantaneous
loss for each lth through the experiment, respectively. We
can see that if we set lth = inf , which indicates the case
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Fig. 2. Instantaneous loss versus time t (lth = 1).

TABLE IV
THE RATIO OF PROCESSED MODES WHEN lth = 1.

Pattern Stabilization (%) Fairness (%) Normal (%)

Best 0 34.8 65.2
Worst 20.1 66.3 13.7

where no monetary fairness is considered, the average of the
maximum loss is nearly US$ 24.46. This situation cannot be
tolerant in the real case. On the other hand, when we set
lth, the maximum loss can be almost upper-bound within lth.
However, when lth = 1, the best of the maximum loss is 1.22
but the average one is 3.41 and the worst one is 3.54. This
indicates that even if we set lth = 1, the core unit cannot
reduce the maximum loss by nearly 1 in most cases. This is
caused by how the core unit chooses the mode. Table IV shows
the ratio of modes both in the best case and the worst case.
We can see that when the ratio of the stabilization mode is
low and the normal mode is high, the maximum loss becomes
small. On the other hand, when the ratio of the stabilization
mode is high and the normal mode is low, the maximum loss
becomes big. This is caused by the variation of the demand
load between household 1 and household 2.

C. Comparison of Maximum Loss

Fig.2(a) shows the variation of the maximum loss against
time t in the best case (lth = 1), where the best case indicates
that the maximum loss is the smallest. We can see that the
variation of the maximum loss is small and the maximum loss
between the household 1 and the household 2 has symmetry,
where symmetry indicates that when l1(t) > 0, l2(t) < 0 and
vice versa. On the other hand, Fig.2(b) shows the variation
of the maximum loss against time t in the worst case (lth =
1), where the worst case indicates that the maximum loss is
the largest. In contrast to the best case, we can see that the
variation of the maximum loss is large and the maximum loss
between the household 1 and the household 2 does not have
symmetry.

TABLE V
MUTUAL INFORMATION OF SF-LS2 AND OUR SCHEME.

Scheme Mutual information
Average Best Worst

SF-LS2 0.0135 0.0018 0.0317
Our scheme lth = 1 0.0134 0.0014 0.0368
Our scheme lth = 5 0.0128 0.0008 0.0325
Our scheme lth = 10 0.0127 0.0008 0.0329
Our scheme lth = 25 0.0127 0.0007 0.0330
Our scheme lth = ∞ 0.0132 0.0007 0.0409

D. Comparison of Demand Load
Fig.3 shows the maximum loss between household 1 and

household 2 versus rsync, where rsync indicates the ratio
that the demand loads of both household 1 and 2 are simul-
taneously increased or decreased over the simulation time.
For example if demands of both the household 1 and 2 are
always increased or decreased simultaneously, rsync = 1.
From Fig.3, we can see that there exist no monetary unfairness
when rsync = 0.25, while the maximum loss of a household
continues to increase when rsync = 0.66. This result shows
that if the usage pattern of two partner households resembles,
the monetary unfairness increases.

E. Comparison of Mutual Information
Table V shows mutual information against both SF-LS2

and our scheme. We can see that there is no significant
difference between SF-LS2 and our scheme irrespective of
the chosen threshold lth. This is because our scheme assumes
that a battery can be simultaneously charged and discharged.
However, there is the difference between the best case and the
worst case in both SF-LS2 and our scheme. This is because
there is the difference in total demand for one month. The
total demand load is 175 kWhin the best case, whereas 2097
kWhin the worst case. This follows the intuition that more
information leaks when a household uses more appliances.

V. CONCLUSION

We have proposed a monetary fair BLH scheme for two
households with one battery. Our BLH scheme aims to achieve
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Fig. 3. The maximum loss between household 1 and 2.

both monetary fairness and low information leakage. Our BLH
scheme consists of three modes: the stabilization, fairness, and
normal mode and changes the mode based on the residual
energy and the amount of loss caused by charging and dis-
charging for BLH. From the computer simulation with a real
electric load dataset, we show that when lth is 1, our scheme
can not only achieve almost the same information leakage with
SF-LS2 but also control monetary loss less than five cents in
the US currency. Through the experiment we conclude that
when the threshold of the maximum loss lth is 1, the maximum
loss can be reduced. We also conclude that especially when
the life style of households are different, the maximum loss
becomes small.
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