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Abstract—The rearreangeable conditions for 2×2 three-stage
switching fabric of wavelength-space-wavelength architecture for
elastic optical switches are considered in the paper. The required
number of frequency slot units in interstage links is much lower
than in the strict-sense nonblocking switching fabrics.

Index Terms—Elastic optical networks, elastic optical switch-
ing nodes, interconnection networks, rearrangeable nonblocking
conditions.

I. INTRODUCTION

The Elastic Optical Network (EON) architecture has been
proposed to utilize the bandwidth available in optical fiber
more efficiently. By breaking the fixed-grid spectrum allo-
cation limit of conventional WDM networks, EONs increase
the flexibility in the connection provisioning [1], [2]. To do
so, depending on the traffic volume, an appropriate-sized
optical spectrum is allocated to connections in EON. This
optical spectrum is called Frequency Slot Unit (FSU). Fur-
thermore, unlike the rigid optical channels of conventional
WDM networks [3], a light-path can expand or contract
elastically to meet different bandwidth demands in EON. In
this way, incoming connection requests can be served in a
spectrum-efficient manner. This technological advance poses
additional challenges on the networking level, specially on
the efficient connection establishment. Similar to Wavelength
Division Multiplexing (WDM) networks, an elastic optical
connection must occupy the same spectrum portion between its
end-nodes, that is, ensuring the so called spectrum continuity
constraint. In addition, the entire bandwidth of the connections
must be contiguously allocated. Bandwidth assigned to an
optical channel depends on the required transmission data
rate, distance to be cover, path quality, wave length spacing
between channels, and/or the modulation scheme used [2], [4]–
[6]. Several architectures of elastic optical switching nodes
were proposed in literature [7]–[10], in this paper, we deal
with one of these switching fabric architectures, it is the W-
S-W (wavelength-space-wavelength) switching fabric, called
WSW1 [11]. Strict-since nonblocking (SSNB) conditions for
WSW1 architecture have been proved in [11]. We proposed
rearrangeable nonblocking (RNB) conditions for this architec-
ture in [12] for simultaneous connections routing with limited
number of connection rates. Simultaneous connections means,
at the same time all connections arrive at all inputs and they
mast be served simultaneously. The number of simultaneous
connection rates that can be served in our model is limited to
z. The upper bound for RNB connections when r > 2 was
derived in [12]. The aim for using RNB switching fabric is to
reduce the required number of FSUs in the interstage links,
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Fig. 1. The WSW1 switching fabric architecture

which means to reduce the cost of this switching fabric. The
necessary and sufficient RNB conditions have been derived in
[12] for the special case when r = z = 2 and n

m1
, n
m2

, and
m2

m1
are integers. In this paper, we generalize theses conditions

to the general case, when r = z = 2 and for any value of n,
m1, and m2. The obtained results contain those proved [12]
for above mentioned special case.

The rest of the paper is organized as follows. In the next
section, the switching fabric is presented and the problem is
described in a more detailed way. In Section III, the proposed
model of RNB is included. The RNB results for the proposed
model are discussed in Section IV. The paper ends with
conclusions.

II. SWITCHING FABRICS AND THE MODEL

The WSW1 switching fabric considered in this paper was
described in more details in [11], here, we will only provide a
short description which will make the paper easier to follow.
This architecture is presented in Fig. 1. In the first and third
stages, there are r bandwidth-variable spectrum converting
switches (BV-WSs), and one bandwidth-variable wavelength
selective space switch (BV-SS) of capacity r×r in the second
stage. Each BV-WS in the first stage has one input fiber with n
FSUs and one output fiber with k FSUs, while each BV-WS
in the third stage has one input fiber with k FSUs and one
output fiber with n FSUs.

The internal architecture of BV-WSs and BV-SS can be
found in [11]. The switching fabric serves m-slot connections,
FSUs in input/output fibers are numbered from 1 to n, BV-
WSs in input/output–stages numbered from 1 to r, and FSUs
in interstage fibers from 1 to k.

In our considerations we assume that BV-WSs have full
range conversion capability, i.e., an m-slot connection which
uses a set of m adjacent FSUs in the input fiber can be
switched to a set of any other m adjacent FSUs in the
output fiber. A new m-slot connection from input switch Ii to
output switch Oj will be denoted by (Ii, Oj ,m). When FSUs
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Fig. 2. The 2× 2 WSW1 switching fabric with C ={(I1[1], O2[6], 2);
(I1[3], O1[1], 5); (I1[8], O2[8], 5); (I2[1], O1[6], 2); (I2[3], O1[8], 2);
(I2[5], O1[10], 2); (I2[7], O1[1], 5); (I2[12], O1[12], 2)}

TABLE I
ASSIGNMENT OF FSUS FOR CONNECTIONS IN EXAMPLE 1.

matrices representing FSUs in matrices representing FSUs in
m1 connections interstage links m2 connections interstage links

Hm1 =

[
0 4
1 0

]
—– Hm2 =

[
1 0
1 1

]
—–

P
m1
1 =

[
0 1
1 0

]
1–2 P

m2
1 =

[
1 0
0 1

]
9–13

P
m1
2 =

[
0 1
0 0

]
3–4 P

m2
2 =

[
1 0
0 0

]
14–18

P
m1
3 =

[
0 1
0 0

]
5–6 —— —–

P
m1
4 =

[
0 1
0 0

]
7–8 —— —–

numbers occupied by these connections are important, the
number of the first FSU will be also provided. (Ii[x], Oj [y],m)
denotes the m-slot connection which in the input fiber of start
Ii occupies FSUs from x to x + m − 1, and FSUs from y
to y + m − 1 of output fiber of switch Oj . In the switching
fabric, when a new connection (Ii, Oj ,m) arrives, a control
algorithm must find a set of m adjacent FSUs in interstage
links which can be used for this connection, and these must
be FSUs with the same numbers in the interstage links from Ii
and to Oj , since BV-SS has no spectrum conversion capability.
In the case of simultaneous connection model, we have a
set of compatible connection requests which occupy most of
FSUs in the input and output fibers, (i.e. the number of free
FSUs in each input/output fiber is less than m1). This set of
connections is denoted by C, and an example of such set in
the 2 × 2 switching fabric with n = 13 is shown in Fig. 2.
Eight connections of two types are to be set up: three 5-slot
connections, five 2-slot connections, and one FSU remains
free in input fiber 1 and output fiber 2. The problem now
is, which FSUs in interstage links should be used by these
connections, and how many FSUs are needed to set up all
these connections, i.e., when the switching fabric is RNB. In
[12] we proposed the control algorithm to assign FSUs to
particular connection requests using the matrix decomposition
algorithm, and showed the RNB conditions in case m2/m1,
n/m1, n/m2 are integers. The case with any number of m1,
m2, and n is considered in the next section.

III. REARRENGEABILITY CONDITIONS

We consider 2× 2 WSW1 switching fabric, the number of
connection rates is limited to 2, i.e., there are only mx-slot

connections, x = 1, 2. A set of compatible connections in C
is represented by matrix Hmx .

Hmx =

[
hmx
11 hmx

12

hmx
21 hmx

22

]
(1)

where hmx
ij is equal to the number of mx-slot connection

requests from switch Ii to switch Oj . According to algorithm
1 in [12], this matrix can be decomposed to cmx

max permutation
matrices Pmx

i , where cmx
max represents the maximum number

of mx-slot connections in one input or output, while cmx

min

represents the minimum number of such connections. We
can use this algorithm to set up the connection requests
presented in Fig. 2. The set of connection requests C consists
of eight connections of two types: three 5-slot connections
and five 2-slot connections. We used Tab. II to explain the
decomposition steps, in the first row Hm1 and Hm2 that
represent these connections. In the next rows matrices that
result from decomposition steps are shown together with the
numbers of FSUs which are assigned to these connections.
The final arrangement of these connections is shown in Fig. 3

In [12] we proved that the WSW1 switching fabric presented
in Fig. 1 with r = 2 is rearangeably nonblocking in case
m ∈ {m1;m2}, m1 < m2, n

m1
, n

m2
, and m2

m1
are integers, if

and only if:
k > n. (2)

Now we will present a new theorem to find the value that
makes this switching fabric RNB in more general case.

Theorem 1: The WSW1 switching fabric presented in Fig. 1
with r = 2 is rearangeably nonblocking for m-slot connec-
tions, where m ∈ {m1;m2}, if:

k >

⌊
n

m2

⌋
·m2 +

(⌊
n

m1

⌋
−
⌊

n

m2

⌋
·
⌊
m2

m1

⌋)
·m1 (3)

Proof: Let C denote a set of compatible connections. We
have two connection rates, m1 and m2, all connections can be
represented by Hm1and Hm2 . According to the decomposing
algorithm in [12], Hm1 and Hm2 can be decomposed into cm1

max

and cm2
max permutation matrices Pmx . Each Pmx

i represents a
set of mx-slot connections which can be set up using the
same mx FSUs in interstage links. From these Pmx

i , only
cm1

min and cm2

min matrices contains 1’s in each row and each
column, other matrices contains some rows and/or columns
with only 0’s. The number of matrices that do not contain 1
in each row and column are (cm1

max − cm1

min) and (cm2
max − cm2

min)
matrices, which may be merged to permutation matrices with
0’s in the same row and same column. In our case the number
of matrices that can be merged is not generally more than
(cm1

max − cm1

min)−(cm1
max − cm1

min). The required number of FSUs
in interstage links to set up all connections simultaneously is
given by the flowing formula:

k > cm1

min ·m1 + cm2

min ·m2 + (cm2
max − cm2

min) ·m2

+(cm1
max − cm1

min)− (cm2
max − cm2

min) ·
⌊
m2

m1

⌋
·m1.

(4)



5 6 7 8 94321

1
1 2 3 54

1
76 8 9 1 2

1 2 3 54

2

76 8 9

1 2

1 2 3 4 5 6 987

2

BV-WS

9

BV-SS

BV-WS

1 21 2 1 221

1 21 23 4 5 6 7 8 9

3 4 5 6 7

9

8

3 4 5 6 7 8 9

3 4 5 6 7 8 9

3 4 5 6 7 8 9

3 4 5 6 7 8 93 4 5 6 7 8

Fig. 3. The 2× 2 WSW1 switching fabric of Fig. 2 with C set up through 18 FSUs according to algorithm mention in [12]

Equation (4) can be simplified to the following one:

k >

(
cm1
max − cm2

max ·
⌊

m2

m1

⌋
+ cm2

min ·
⌊

m2

m1

⌋)
·m1

+cm2
max ·m2

(5)

Equation (5) mast be maximize through all possible sets
C. Since cmx

max represents the maximum number of mx-slot
connections in one of inputs or outputs, the number of such
connections in one input/output will never be greater than
b n
mx
c. When cmx

max values maximize cmx

min values minimize.
when we put in (5) cmx

max = b n
mx
c and cmx

min = 0 we get:

k >

⌊
n

m2

⌋
·m2 +

(⌊
n

m1

⌋
−
⌊

n

m2

⌋
·
⌊
m2

m1

⌋)
·m1 (6)

In the next section, the idea of the proof will be more clear
explained by using an example.

IV. EXAMPLE

As an example, let us consider the 2× 2 WSW1 switching
fabric with n = 16, z = 2, m1 = 3, and m2 = 5, the set C
of connection requests through this switching fabric is shown

in Fig. 4. It can be represented by matrices Hm1 =

[
0 2
0 3

]
and Hm2 =

[
2 0
1 0

]
. The number of permutation matrices

for Hm1 is cm1
max = 5 , and for Hm2 is cm2

max = 3. The
matrices that are not contain 1’s in each row and each column
can be merged together because it represents connections
independent to each other and are directed to different outputs.
After decomposition the number of permutation matrices from
Hm1 that cannot be merged with other matrices, is equal
to cm1

min = 0 and for Hm2 is cm2

min = 0. But that not
mean all of the permutation matrices can be merged together
because of the value of n/m1,n/m2 and m2/m1 are not
integer (or at lest the third value is not integer which is
important). So we can not merge matrices only ratio bm2

m1
c

and such is in 4 this example. For Hm1 , Pm1
1 =

[
0 1
0 0

]
, we

get Hm1
1 = Hm1 − Pm1

1 =

[
0 1
0 3

]
. Then the next permutation

matrix is Pm1
2 =

[
0 1
0 0

]
, and Hm1

2 = Hm1 − Pm1
2 =

[
0 0
0 3

]
.

TABLE II
ASSIGNMENT OF FSUS FOR CONNECTIONS IN EXAMPLE 1.

Perm. Merged Merged Assigned
matrix perm. Connection Connection FSUs

matr.
P

m1
1 — (I1[7], O2[4], 1) — 1

— (I2[1], O1[7], 1)

P
m2
1 — (I1[4], O2[1], 3) — 2—4

— (I2[8], O1[4], 3)

P
m2
2 — (I1[8], O2[5], 3) — 5—7

— (I2[11], O1[14], 3)

P
m2
3 (I1[11], O2[8], 3) 8—10

P
m1
5 (I2[2], O1[8], 1) 8

P
m1
6 (I2[3], O1[9], 1) 9

P
m1
7 (I2[4], O1[10], 1) 10

P
m2
4 (I1[14], O2[11], 3) 11—13

P
m1
8 (I2[5], O1[11], 1) 11

P
m1
9 (I2[6], O1[12], 1) 12

P
m1
10 (I2[7], O1[13], 1) 13

P
m2
5 (I2[14], O2[14], 3) 14—16

P
m1
2 (I1[1], O1[1], 1) 14

P
m1
3 (I1[2], O1[2], 1) 15

P
m1
4 (I1[3], O1[3], 1) 16

From the last Hmi21 we can get three equal permutation

matrices Pm1
3 = Pm1

4 = Pm1
5 =

[
0 0
0 1

]
. For Hm2 the

first and second permutation matrices are equal Pm2
1 =

Pm2
2 =

[
1 0
0 0

]
. And the next permutation matrix we get

from Hm2
2 = Hm2 − Pm2

1 − Pm2
2 =

[
0 0
0 1

]
= Pm2

3 . For each

permutation matrices that we got, the assigned FSUs is

V. CONCLUSIONS

We considered WSW1 switching fabrics for elastic optical
switching nodes. For switching fabrics of capacities r = 2 and
with two connection rates z = 2. We derived the formula for
rearrangeablility in any values of n, m1, and m2. A step by
step example to explain the idea of merging operation is stated
with details.
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