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Abstract—This paper is devoted to performance evaluation of 

the SMM (Space-Memory-Memory) Clos-network switch under a 
packet dispatching scheme employing static connection patterns, 
called SD (Static Dispatching). The control algorithm with static 
connection patterns can be easily implemented in the SMM 
fabric due to bufferless switches in the first stage. One of the very 
important performance factor of packet switching nodes is the 
stability. In general, a switch is stable for a particular arrival 
process if the expected length of the packet queues does not grow 
without limits. In this paper we use the second Lapunov method 
to prove the stability of SMM Clos-network switches under SD 
packet dispatching scheme. Results of simulation experiments, in 
terms of average cell delay and packet queue lengths are also 
shown. 

Keywords—Clos-network switch, packet dispatching 
algorithms, packet switching network, stability of switching network 

I.  INTRODUCTION  

Connecting paths between input and output ports in 
switches/routers are provided by switching fabrics, which are 
the main part of every packet switching nodes. The switching 
fabrics replace too slow buses mainly in middle-size and high-
end routers and switches. They can establish connections 
between input ports and requested output ports, and 
simultaneously transmit packets. The one stage switching 
fabrics called crossbar switches are used mainly in middle-size 
routers/switches [1]. Basically, an N×N crossbar switch 
consists of a square array of N2 individually operated 
crosspoints (N represents the number of inputs and outputs). 
Each crosspoint has two possible states: cross (default) and bar, 
and corresponds to input-output pair. A connection between 
input port i and output port j is established by setting the (i, j)th 
crosspoint to the bar state while letting other crosspoints along 
the connecting paths remain in the cross state. The crossbar 
switch can transfer up to N cells from different input ports to 
different output destinations in the same time slot. The control 
algorithm for the crossbar fabric is very simple due to the bar 
state of the crosspoint can be triggered individually by each 
incoming packet when its destination matches with the output 
address. The crossbar fabrics are complex in terms of the 
crossponts number, which grows as N2. The arbitration process 
that has to choose packets to be sent from inputs to outputs in 

each time slot can also become a system bottleneck as the 
switch size increases.  

In high-end routers multi-stage or even multi-stage and 
multi-plane switching fabrics are used. In this case the Clos-
network switches are very attractive because of its modular and 
scalable architecture. The Clos-network fabric is composed of 
crossbar switches arranged in stages [2]. This switching fabric 
is currently used by network equipment vendors to build core 
routers e.g. Cisco’s CRS series, Juniper’s T series, and 
Brocade’s BigIron RX Series. For example, in the CISCO’s 
new router called CRS-X (Carrier Routing System - X), a 
multi-stage and multi-plane switching fabric is used. This 
family of routers focus on extreme scale. One standard 7 ft rack 
chassis of CRS-X deployment can deliver up to 12.8 terabits 
per second. The system can be clustered together in a massive 
configuration of up to 72 chassis, which would deliver up to 
922 Tbps of throughput [3].  

High-speed switching fabrics adopt the use of cells, fixed-
length data units. All incoming variable-length packets (e.g. IP 
packets) are segmented at ingress line cards into fixed-size 
cells. Next, they are transmitted in time slots through the 
switching fabric, and re-assembled into packets at egress line 
cards, before they depart [1]. While a cell is being routed in a 
packet switching system, it can face a contention problem 
resulting from the fact that two or more cells compete for a 
single resource. Cells that have lost contention must be either 
discarded or buffered. According to buffer allocation schemes 
Clos-network packet switches are classified to: Space-Space-
Space (SSS or S3), Memory-Memory-Memory (MMM), 
Memory-Space-Memory (MSM), and Space-Memory-Memory 
(SMM) switches.  

In this paper, we analyze the SMM Clos-network switch 
[4], where bufferless modules are used in the first stage and 
buffered crossbars in the second and the third stages. Due to 
bufferless modules in the first stage very simple control 
algorithm may be implemented to distribute cells to the central 
modules e.g. static dispatching (SD).  

The remainder of this paper is organized as follows. Section 
II introduces some background knowledge concerning the 
SMM Clos-network switch and the SD algorithm. Using 
Lyapunov second method, we prove that the investigated 



switching fabric is stable under the SD packet dispatching 
scheme in Section III. Section IV presents simulation results 
obtained for the SD scheme. We conclude this paper in section 
V. 

II. THE SMM CLOS-SWITCHING FABRIC AND SD SCHEME 

The three-stage Clos switching fabric architecture is 
denoted by C(m, n, r), where the parameters m, n, and r entirely 
determine the structure of the network. There are r input 
modules (IM) of capacity n  m in the first stage, m central 
modules (CM) of capacity r  r, and r output modules (OM) of 
capacity m  n in the third stage. The capacity of this switching 
system is N  N, where N = nr. The three-stage Clos-network 
switch is strictly non-blocking if m  2n-1 and rearrangeable 
non-blocking if m  n. 

 
Fig. 1. The SMM Clos-network switch 

In the basic SMM Clos-network switch (shown in Fig. 1), 
the first stage consists of r bufferless IMs with n input ports 
(IPs) each. The second stage consists of m CMs, and each of 
them has r FIFO buffers (COQs), one per output. Maximum r 
cells from r IMs may arrive to one COQ buffer, so it must 
work r times faster than the line rate. The third stage consists of 
r OMs, where each output port OP(j, h) has FIFO output buffer 
(OQ). Maximum m cells from m CMs may arrive to one OQ, 
so to store all cells during one time slot it must work m times 
faster than the line rate. The interstage links between IMs and 
CMs are denoted by LI(i, k), where i represents the number of 
IM, and k - the number of CMs, whereas LC(k, j) denotes 
interstage links between CM(k), and OM(j). Instead of using 
shared-memory CM and OM modules it is possible to employ 
the CQ (Crosspoint Queued) switches, where the speed-up is 
not necessary [5]. 

The SD scheme investigated in this paper seems to be the 
simplest packet dispatching algorithm that can be implemented 
in the SMM Clos-network switch. It is adaptation of the SRRD 
(Static Round-Robin Dispatching) to the SMM Clos-network 
switch, and is less demanding in terms of hardware, in 
comparison with other proposed schemes (e.g. [6]). The SD 
scheme does not need any special arbitration e.g. the 
handshaking processes, to distribute cells to the CMs. The key 
idea of the scheme are static connection patterns which are 

used in each IM. The consecutive static connection patterns 
used in IMs are shown in Fig. 2.  

The connection patterns are the same in all IMs and are 
shifted to the next one in consecutive time slots. Cells arriving 
to each input are at once distributed do the CMs, and are stored 
in COQ related to destined OMs. In the first time slot cells 
from IP(x, 1) are sent to CM(1), from IP(x, 2) to CM(2), from 
IP(x, 3) to CM(3); in the second time slot cells from IP(x, 1) 
are sent to CM(2), from IP(x, 2) to CM(3), from IP(x, 3) to 
CM(4) and so on. Arriving cells are evenly distributed to CMs, 
to decrease cell delay within the SMM Clos-network switch. 

 
Fig. 2. A sequence in which the static connection patterns should be changed 
in each IM of capacity 3  3  

The SD scheme may be also adopted to the MSM Clos-
network switch [7]. 

III. INPUT TRAFFIC ANALYSIS 

We assume that the traffic directed to each input port 
IP(i, h) can be modeled by i.i.d. Bernoulli process, where the 
number of successes – which means the number of cells 
arriving in t time slots (in t trails) is tpB with pB denoting the 
probability of success in one trial. In such case ports arrival 
rate is expressed by the expected value: 
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Therefore, the input traffic arriving to one input module is 
equal to λIM=npB, and to the whole switching fabric, to all input 
modules – rnpB. The SD algorithm balances this input load on 
CMs and after m time slots the central modules arrival rate can 
be expressed in the following way: 
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There are output queues (COQs) in each central module 
which store cells destined do the predetermined OMs. 
Analyzing the input rate of this queues it is easy to see that this 
rate can be assessed as:   
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where pij represents the probability that a cell arriving from the 
i-th input module is destined to the j-th output module. For 
example, under the traffic uniformly distributed to the output 
ports and in consequence to the output modules OMs, pij=1/r. 
This means that even for maximal input ports load i.e. for 
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pB=1, the rate λCOQ(i, j) is less or equal to 1 if the number of 
OMs is m≥n. 

In the investigated SMM Clos-network architecture each 
central module CM has one link to each OM. This assures that 
in each time slot from any non-empty COQ(i, j) one cell will 
be sent to the appropriate OM(j), which can be described by the 
COQ(i, j) queue’s service rate μ=1. 

IV. STABBILITY PROOF 

It should be noted that one of the most important 
characteristics of the switching network under control of a 
given control algorithm is its throughput and the average and 
maximum packet delay. Both these parameters depend directly 
on the stability of such systems.  

Intuitively, stability implies that the total number of packets 
(cells) in the system remains bounded, so that the following 
equation (4) is satisfied: 
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Here, qt represents the queue-lengths vector at time slot t 
and Dl and Al are the departure and arrival vectors at time slot l 
respectively. 

The stability of the switching network means that the length 
of the queues of cells waiting to be transmitted to output ports 
does not grow to infinity. This property is extremely important 
because the length of the queues affects the delay of cells in the 
system. 

The theory of stability for deterministic dynamic systems 
was founded by A. Lyapunov [10] (see also [11] for survey of 
stability ideas) who invented two methods for stability 
investigation. His second method known as Lyapunov’s second 
method or indirect method turned out to be very effective in 
proving the stability of very wide spectrum of deterministic 
systems – linear, non-linear, continuous and discrete. Later, 
Lyapunov’s ideas has been extended on stochastic systems 
mainly by F. Foster [8]. The application of this theory to 
Markov chains was done by S. Meyn and R. Tweedie [9]. 
According to [8] and [9] the stability proof for stochastic 
systems modeled by Markov chains must show: 

 the irreducibility of the chain which means that starting 
from any initial state it is possible to arrive in 
subsequent transitions on any other state of the chain;  

 the positive recurrence of the chain, which can be done 
by demonstrating the negative drift of the Lyapunov 
function.  

The function fulfilling Lyapunov conditions can be 
regarded as Lyapunov candidate function (only the 
candidate function which allows stability proving is called 
Lyapunov function). The requirements impose that 
Lyapunov candidate function V(x) [9]:  

 is scalar on investigated system’s state vector x; 
switching networks’ states are determined by queue 
lengths; 

 positive semidefinite, i.e.: ;0)(;0)(
0
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 grows with the state growth of the investigated system 
which, in our case, means that it grows with the length 
of switching network queues;  

 for continuous systems: 1)( CxV  . 

Generally saying, there are two levels of stability [8, 9, 11] 
- the so-called weak stability and the asymptotic stability. A 
proof of weak stability for a given switch network guarantees 
its full, 100% throughput, but does not predetermine the 
maximum delay of cells, which in general may be unlimited. 
The asymptotic stability is a more demanding level of stability, 
which guarantees not only full throughput of the network, but 
also a finite value of the maximum cells delay. 

Formally, the switching system in which the packets (cells) 
arrival is an independent random process is characterized by 
the weak (in Lyapunov sense) stochastic stability if for every 
ɛ> 0 there exists δ> 0, that: 
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Where P{Z} denotes the probability of the event Z, and ||qt|| 
is any norm of qt – the measure of queues in the system. 

The asymptotic stochastic stability is defined as follows: a 
switching fabric in which the packets (cells) arrival is an 
independent random stationary process is characterized by 
asymptotic stochastic stability if: 

 }{sup tqE  (7) 

Inequality (7) means that the maximum expected value of 
||qt|| is finite. The asymptotic stochastic stability guarantees 
limited average queue lengths and limited cell delay times.  

As shown above, the dynamics of the SMM switching 
fabric is determined by the COQ queues (due to static 
connections of the central stage with the first and third stages 
the contentions are possible only in the COQ queues). 

Let us note that the dynamics of the COQ(i, j) queue can be 
represented by the Markov chain’s state diagram depicted in 
Fig. 3, where λ represents queue arrival rate - λCOQ (i, j), and μ - 
is the queue service rate. 

 
Fig. 3. State graph of the COQ(i, j) queue 

The proof of stability of this queue can be based on the 
second Lyapunov method [8, 9, 10]. It requires that Lyapunov 
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candidate function V(qt), defined on the queue length, has a 
negative drift, strictly that: 
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In the following proof of stability, Lyapunov candidate 
function is chosen as the simplest possible one: 

 tt qV(q )  (9) 

The selected function V(qt) satisfies the previously 
specified Lyapunov candidate function requirements. After 
substituting the selected function V(qt) into the left-hand side of 
inequality (8) and taking into account the graph in Fig.3: 
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Eventually, the stability condition is: 

 0





 (11) 

The drift is negative when λ < μ. For μ = 1 the system will 
be weakly stable (stable in Lyapunov sense) for λ < 1. It is 
worth noting that it does not follow that for λ = 1 the system 
will not be stable. The Lyapunov method proves only the 
stability, and if that fails, the instability of the studied system 
not follows from it.  

For proving the asymptotic stochastic stability, it should be 
shown that: 
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For this purpose, we need another Lyapunov candidate 
function V(qt) – we choose it as:  
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The drift of this function is: 
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Solving the inequality: 
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the conditions for asymptotic stability can be determined. For 
μ = 1 we obtain: 
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tq and λ < 1 (16) 

This means that the asymptotic stability will only occur for 
qt sufficiently large, for example assuming λ = 0.9, this will be 
an average of 10 cells, that is, when the value is reached, the 
cell delay will be limited and stabilized. 

V. SIMULATION EXPERIMENTS 

The experiments have been carried out for the SMM Clos-
network switch C(8, 8, 8) of size 64 × 64 (8 switches in each 
stage) under the SD algorithm. A wide range of traffic load per 
input port, from pB = 0,05 to pB = 1, with the step 0.05, was 
considered in each simulation experiment. The 95% confidence 
intervals that have been calculated after t-student distribution 
for ten series with 250 000 time slots (after the starting phase 
comprising 50 000 time slots, which enables to reach the stable 
state of the SMM Clos-network switch) are at least one order 
lower than the mean value of the simulation results, therefore 
they are not shown in the figures. It is assumed that in the 
second and third stages the switches with output buffers are 
used, and the size of buffers is not limited. Three main 
performance measures have been evaluated: average cell delay 
in time slots, maximum size of OQs, and throughput. A switch 
can achieve 100% throughput under the uniform or nonuniform 
traffic, if the switch is stable, as was defined in [12]. It means 
that the cell queues do not grow without the limit.  

Two packet arrival models are considered in simulation 
experiments: the Bernoulli arrival model, and the bursty traffic 
model, where the average burst length is set to 16 cells. Several 
traffic distribution models (the most popular in this research 
area) have been considered, which determine the probability pij 
that a cell, which arrives at an input i, will be directed to an 
output j. The considered cell distribution models are: uniform - 
pij = pB/N, diagonal - pij = 2pB/3 for i = j and pij = pB/3 for j = 
(i+1) mod N, and 0 otherwise, and Hot-spot: pij = pB/2 for i = j, 
and pB/2(N-1) for i ≠ j.  

Selected simulation results are shown in Fig. 4, and 5. 
Fig. 4 shows average cell delay, in time slots, obtained for 
Bernoulli and bursty arrival models, and different kind of cell 
distribution models. The SD algorithm provides 100% 
throughput for the investigated switching fabric only for 
uniform traffic and Bernoulli arrival model. Under Bernoulli 
arrivals, the throughput is limited to 90% for non-uniform 
traffic, like diagonal and Hot-spot. It is possible to say, that the 
SD scheme, for the uniform and non-uniform traffic 
distribution patterns under Bernoulli arrivals, performs quite 



well, when the input load is smaller than 0.85. In this case, the 
average cell delay is not greater than 10 time slots. For the 
bursty arrival model the SMM Clos-network switch controlled 
by the SD algorithm is not able to achieve the 100% 
throughput for both the uniform and nonuniform traffic 
distribution patterns. For the uniform traffic, the throughput is 
close to 98%, but for the non-uniform traffic the throughput is 
limited to 80%. 

 
Fig. 4. Average cell delay at egress side of the SMM Clos-network switch 
under the SD scheme 

Fig. 5 shows maximum OQ length obtained during 
simulation experiments. These results are consistent with charts 
presented in Fig. 4. It can be seen that for Bernoulli arrivals the 
OQ length rapidly grow for heavy input load and non-uniform 
traffic (pB>0.9). For the bursty traffic the OQ length increasing 
very fast for pB>0.75, especially for non-uniform cell 
distribution patterns. 

Generally saying, the SD algorithm is very simple in 
implementation within the SMM Clos-network switch and can 
produce good results for input load pB<0.7 for both the uniform 
and nonuniform traffic distribution patterns. The results related 
to the throughput are not very good, but the complexity of this 
algorithm is very low.  

 
Fig. 5. Maksimum OQ length in OMs under the SD scheme 

VI. CONCLUSIONS 

This paper aims at performance evaluation of the SMM 
Clos-network switch under the packet dispatching scheme 

employing static connection patterns, called SD. The system is 
evaluated in terms of stability and basic performance measures 
like average cell delay and packet queue lengths. In Section IV 
we show how it is possible to use the second Lyapunow 
method to prove the stability of the SMM Clos-network switch 
under the SD algorithm. Taking into account, that the stability 
is proven for ideal, theoretical traffic, in Section V we show 
simulation results obtained for uniform and non-uniform traffic 
distribution patterns, and Bernoulli and bursty arrival models. 
The investigated cell dispatching scheme is very simple, but it 
is not able to provide good performance of the SMM Clos-
network switch for very high input load (pB>0.7), especially for 
bursty traffic. It is also not possible to provide in-sequence 
service under this algorithm, which results in special 
resequencing buffers at outputs. 
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