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Abstract– We consider a cell of certain capacity in a 
homogeneous wireless cellular network that accommodates 
new and handover calls from K service-classes and we 
assume that new calls follow a random or quasi-random 
process while handover calls follow a quasi-random process. 
The cell is analysed as a loss system. Calls are accepted in 
the cell based on a state-dependent bandwidth sharing 
policy. More precisely, if the number of in-service calls (new 
or handover) of a service-class exceeds a threshold (different 
for new and handover calls), then a new or handover 
arriving call of the same service-class is accepted in the cell 
with a predefined state-dependent probability. The 
proposed multirate loss model has a Product Form Solution 
(PFS) for the steady state probabilities. Based on the PFS, 
we propose a convolution algorithm for the accurate 
calculation of congestion probabilities. The accuracy of the 
proposed algorithm is verified through simulation and is 
highly satisfactory. 

 

I. INTRODUCTION 

Quality of Service (QoS) mechanisms are essential in 
contemporary networks in order to provide access to the 
required bandwidth needed by services. Considering call-
level traffic in a single cell which accommodates 
different service-classes with different QoS requirements, 
such a QoS mechanism is a bandwidth sharing policy. 
The latter affects call-level performance measures such as 
Call Blocking Probabilities (CBP).  

The simplest bandwidth sharing policy is the classical 
Complete Sharing (CS) policy, where a new call is 
accepted in the cell simply if the call’s bandwidth is 
available [1]. Due to this simple call admission 
mechanism, the CS policy cannot guarantee a certain 
QoS to a service-class, while it is unfair to calls of high 
bandwidth requirements, because it leads to higher CBP 
compared to calls of low bandwidth requirements (e.g., 
[2]-[11]). This unfairness motivates research on other 
policies, such as the Bandwidth Reservation (BR) policy 
(e.g., [12]-[26]) and the Threshold (TH) policy. 

In this paper, we concentrate on the TH policy, 
because it is broadly applicable in wired (e.g., [27]-[33]) 
and wireless (e.g., [34]-[36]) networks. In the TH policy, 
a new call of a service-class k is blocked and lost (even if 
available bandwidth exists in the system) if upon its 
arrival the number of in-service service-class k calls plus 
the new call exceeds a threshold (dedicated to service-
class k). We propose a state-dependent TH policy for a 

cell that accommodates quasi-random arriving calls of 
different service-classes. By the term “quasi-random”, we 
refer to calls generated by a finite number of Mobile 
Users (MUs). In the proposed policy, the acceptance of a 
call (subject to bandwidth availability) above a threshold 
is permitted with a probability. This probability depends 
not only on the state of the system but also on the 
service-class of the new call. The proposed loss model 
has a Product Form Solution (PFS) for the steady state 
distribution. Thanks to the existence of the PFS, we can 
accurately determine congestion probabilities based on a 
convolution algorithm [37].  

This paper is organized as follows: In Section II, we 
present the proposed policy, show the PFS and provide a 
convolution algorithm for the calculation of congestion 
probabilities. In Section III, we present the case where 
new calls follow a Poisson process and handover calls 
follow a quasi-random process. In Section IV, we present 
analytical congestion probability results both for the 
proposed model and the models of [38] (CS policy), [39] 
(BR policy), and [36] (TH policy) for evaluation. We 
conclude in Section IV.  

 

II. THE PROPOSED MODEL FOR QUASI-RANDOM 

TRAFFIC 

Consider a cell of fixed capacity C channels that 
accommodates quasi-random arriving calls under the 
proposed policy. To facilitate the presentation of the 
model, we separate new from handover calls of the same 
service-class. This means that the cell accommodates 2K 
service-classes. A service-class k call is new if 
1 k K  and handover if 1 2K k K   . A new 
service-class k call and a handover service-class K+k call 
require the same number of channels, bk. Service-class k 
calls (k =1,…,2K) come from a finite source population 

kN . The effective arrival rate of service-class k calls is 

, ( )k fin k k kN n v   where kn is the number of in-service 

calls and kv is the arrival rate per idle source. The offered 

traffic-load per idle service-class k source is 

, /k fin k ka v  (in erl) where 1
k
 is the mean service time 

(generally distributed) of an accepted service-class k call. 
To describe the call admission mechanism, consider a 

service-class k call that requires bk channels. If these 
channels are not available in the cell, then the call is 
blocked and lost; otherwise: 



a) If the number nk of in-service calls of service-class k  
(k =1,…,2K) in the steady state plus the new or handover 
call, does not exceed a threshold *

kn , i.e., nk + 1  *
kn , 

then the call is accepted in the system. 
b) If nk + 1 > *

kn , the call is accepted with probability 
( )k kp n or blocked with probability 1- ( )k kp n . The set of 
( )k kp n is defined as:  

*( (0), (1)..., ( ),..., ( / 1), ( / ))k k k k k k k kp p p n p C b p C b       kp           (1) 

where / kC b    is the maximum number of service-class 

k calls that can be serviced by the system. 

In (1), we assume that: a) *(0) ... ( 1) 1k k kp p n    , i.e., a 
service-class k call is accepted if *

kn is not exceeded, b) 

the probabilities *( ),..., ( / 1)k k k kp n p C b     may be 

different for new or handover calls of the same service-
class k (in the TH policy [27], these probabilities are 
zero) and c) ( / ) 0k kp C b     due to lack of bandwidth. 

Let the steady state vector be 1 2( ,..., ,..., )k Kn n nn , 

1 2( ,..., 1,..., )k Kn n n -
kn , 1 2( ,..., 1,..., )k Kn n n  kn and ( ),finP n

( ), ( )fin k fin kP P n n are the probability distributions of 

states , ,k k
 n n n , respectively. 

 The Global Balance (GB) equation for state n, 
expressed as rate into state n = rate out of state n, is: 
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Ω is the state space of the system, Ω={n: 0  nb  C, 

k=1,…,2K}and nb =
2

1
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k k
k

n b

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The Markov chain of the proposed model is reversible 
and therefore, Local Balance (LB) exists between 
adjacent states. The form of LB equations, extracted as 
(rate up = rate down), for k =1,…,2K and n   is as 
follows: 

( 1) ( ) ( 1) ( ) ( ) ( )k k k k k k fin k k k k finN n v p n P n P      n n n n                  (3) 

( ) ( ) ( ) ( ) ( 1) ( ) ( )k k k k k k fin k k k fin kN n v p n P n P     n n n n                   (4) 

The system of LB equations is satisfied by the PFS: 
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where G is the normalization constant given by: 
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In a system with quasi-random input, CBP are 
distinguished to Time Congestion (TC) and Call 
Congestion (CC) probabilities. To calculate the TC 

probabilities of service-class k calls, Bk, let Ωk={n:0  nb 
 C-bk, k=1,…,2K} be the state space which denotes the 
set of states for which a service-class k call will be 
definitely accepted or accepted with a state-dependent 
probability in the system. Thus: 

1k kB G G                                                                 (7) 

where ( ) ( )
k

k k k finG p n P


 
n Ω

n . 

CC probabilities, i.e., CBP seen by an arriving call, are 
calculated via (7) by considering Nk – 1 traffic sources. 
Note that in the case of random input, CC and TC 
probabilities coincide. In that case, we use the term CBP. 

For an efficient calculation of TC or CC probabilities 
we exploit (5) and use a 3-step convolution algorithm: 

Define j as the occupied bandwidth, j = 0, 1,…,C.  
Step 1) Determine the occupancy distribution qk(j) of 
each service-class k (k=1,…,2K), assuming that only 
service-class k exists in the system: 
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Step 2) Determine the aggregated occupancy distribution 

( )kQ  based on the successive convolution of all service-

classes apart from service-class k: 

( ) 1 1 1 2... ...k k k KQ q q q q         

The term “successive” means that we initially convolve 
q1 and q2 to obtain q12. Then we convolve q12 with q3 to 
obtain q123 etc. The convolution operation between qk and 
qr is defined as: 
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Step 3) Calculate the TC probabilities of service-class k 
based on the convolution of ( )kQ   and qk as follows: 
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Normalizing the values of (10), we obtain the occupancy 
distribution q(j), j=0,1,…,C via: 
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Based on q(j)'s, we propose the following formula for 
the TC probabilities of service-class k: 
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The first term of (12) refers to states j where there is no 
bandwidth available for service-class k calls. The second 
term refers to states * ,...,k k kx n b C b   where there is 



available bandwidth for service-class k calls but call 
blocking occurs due to the proposed policy.  

If kN  for 1,..., 2k K and the total offered traffic 
remains constant, then a Poisson process arises and we 
have the model of [36] whose PFS is the following: 
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where 1
k k ka    is the offered traffic-load (in erl) of 

service-class k calls and G is the normalization constant: 
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For the CBP calculation, we exploit (13) and use the 
aforementioned 3-step convolution algorithm, whereby 
the only change is in (8) which becomes [36]: 
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III. THE PROPOSED MODEL FOR RANDOM/QUASI-
RANDOM TRAFFIC 

A special case of the previous model is the model 
whereby new calls follow a Poisson process and 
handover calls a quasi-random process. In that case, we 
can extract the following LB equations: 

, ,( ) ( 1) ( ) ( ) ( ), 1k k k k inf fin k k k k inf finp n P n P k K        n n n n (15) 
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This system of LB equations is satisfied by the PFS: 

* *

1 12
1

,
1 1

( ) ( ) ( )
!

k k k

k

k k

n n nK K
k nk

inf, fin k k fin k
k k K kx n y nk

Na
P G p x a p y

nn

 


   

     
               

   n (19)                                              

where G is the normalization constant given by: 
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For an efficient calculation of congestion probabilities, 
we exploit (19) and use the 3-step algorithm of Section II, 
whereby, qk(j)’s for new and handover service-class k 
calls are given by (14) and (8), respectively.  

IV.  NUMERICAL RESULTS 

In this section we present analytical results for an 
application example. Simulation results are mean values 
of 7 runs and are almost identical to the corresponding 
analytical results. The simulation tool used is Simscript 
III [40]. 

We consider a cell of capacity C=150 channels that 
accommodates two service-classes, with the traffic 
characteristics as shown in Table I: 

 
Table I: Traffic characteristics 

 
We provide analytical and simulation TC probabilities 

results for the proposed random/quasi-random model 
considering two scenarios: (1) New calls of the 1st 
service-class behave as in the ordinary TH policy, i.e., 

1 1 1(35) (36) ... (75) 0p p p    , while new calls of the 
2nd service-class are accepted in the system with 
probability 2 2(10) ... (20) 0.5p p   , and 2 (21) 0p  , 
(2) New calls of the 1st service-class are accepted in the 
system with probability 1 1(35) ... (74) 0.7p p   , and 

1(75) 0p   while new calls of the 2nd service-class are 
accepted as in scenario 1. For both scenarios, we assume 
that 3 4() () 0.95p p  , for all possible states equal or 
above the corresponding thresholds. These TC 
probabilities results are compared with the TC 
probabilities: a) of random new and handover traffic and 
the CS policy [38], the BR policy [39] and the threshold 
policy of [36] and b) for random new and quasi-random 
handover traffic and the CS or the BR policy [41]. In the 
BR policy, the values of the BR parameters are t1 = t3 = 5 
channels and t2 = t4 = 0 so as to achieve equalization of 
TC probabilities among calls (new or handover) of both 
service-classes. The BR parameters of a service-class k 
denote the number of channels reserved to benefit calls of 
all service-classes, apart from k. In the x-axis of Figs 1-4 
the offered traffic load of new and handover calls of both 
service-classes increases in steps of 1.0, 0.2, 0.5 and 0.1 
erl, respectively. So, point 1 refers to: (a1, a2, a3, a4) = 
(20.0, 5.0, 6.0, 1.0) while point 11 to: (a1, a2, a3, a4) = 
(30.0, 7.0, 11.0, 2.0).  

Figures 1-4 show that: a) The proposed policy affects 
the TC probabilities; thus, it allows for a fine congestion 
control aiming at guaranteeing QoS to each service-class. 
(b) The TC probabilities obtained for random handover 
traffic are higher compared to the corresponding results 
obtained for quasi-random handover traffic. This is 
anticipated due to the finite number of traffic sources in 
the case of quasi-random traffic. (c) The existing CS and 
BR policies fail to approximate the results obtained from 
the proposed policy. 

  Service-class   Traffic-

load 

(erl) 

 Bandwidth  

(channels) 

 Threshold Sources Traffic-load 

per idle 

source 

(erl) 

1st (new)  a1= 20.0 b1 = 2 *
1n  = 35 

100 a1,fin = 0.20 

2nd (new)  a2 = 5.0 b2 = 7 *
2n  = 10 

100 a2,fin = 0.05 

1st (handover)  a3 = 6.0 b3 = 2 *
3n  = 70 

100 a3,fin = 0.06 

2nd (handover)  a4 = 1.0 b4 = 7  *
4n  = 20 

100 a4,fin = 0.01 



V.  CONCLUSION 

 We propose a teletraffic multirate loss model for a 
single cell that accommodates quasi-random traffic under 
a state-dependent threshold-based bandwidth sharing 
policy. The link is analysed as a multirate loss system, via 
a reversible continuous-time Markov chain, which leads 
to a PFS for the steady state distribution. Based on the 
PFS, congestion probabilities can be accurately 
determined via a convolution algorithm. Comparison 
against other models under the CS, the BR or the TH 
policy, reveals the necessity of the new model.   
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Fig. 1. TC probabilities – 1st service-class (new calls). 

 

 
Fig. 2. TC probabilities – 2nd service-class (new calls). 

 
Fig. 3. TC probabilities – 1st service-class (handover calls). 

 

 
Fig. 4. TC probabilities – 2nd service-class (handover calls). 


