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Abstract—In this paper, product of three random variables 

will be considered. Level crossing rate (LCR) of product of 

Nakagami-m random variable, Rician random variable and 

Rayleigh random variable will be calculated. Obtained result 

can be used for evaluation the LCR of product of three 

Rayleigh random variables, LCR of product of two Rayleigh 

random variables and Rician random variable, and LCR of 

product of Nakagami-m random variable and two Rayleigh 

random variables.  
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I. INTRODUCTION 

In this paper, product of Nakagami-m random variable 
(RV), Rician random variable and Rayleigh random variable 
will be analyzed. Probability density function (PDF) and 
cumulative distribution function (CDF) will be calculated. 
By using PDF, the bit error probability (BEP) can be 
evaluated, and by using CDF, the outage probability (OP) 
can be obtained [1][2]. The outage probability and the bit 
error probability are the first order performance measure of 
wireless communication system. Level crossing rate (LCR) 
is the second order performance measure of wireless 
communication system, as well as average fade duration 
(AFD). AFD can be evaluated as the ratio of the OP and the 
LCR. The OP can be calculated as probability that signal 
envelope is below the threshold [3].  

Obtained results have application in performance analysis 
of multi-hop relay wireless telecommunication systems when 
the signal level is much higher than the noise level. In such 
case, the noise level can be ignored. For that matter, the 
output signal is product of as many random variables as the 
sections in the relay system [4]. 

Compared to sums of random variables, interest for 
products started in the 1970s [5]-[6], but has been developing 
intensely over the past few years. Still, products of random 
variables arise naturally in many applications such as: 
channel modeling, multihop wireless relaying systems, 
cascaded fading channels, MIMO keyhole systems [7], 
quantum physics, signal processing, tensor sensing problem, 
the rate offset of the hybrid automatic repeat request (H-
ARQ) transmission, and even in biological and physical 
sciences, econometrics, classification, ranking and selection 
[8]. 

The signal envelope variations, called fading, are results 
of reflections, refractions, diffraction and scattering. They 

can be described by several distributions. So, Rayleigh [9] 
and Nakagami-m [10] distributions are used when dominant 
component is not present. Signal envelope variation is 
modeled by Rician distribution when line-of sight (LOS) 
dominant component exists in the channel [11]. 

We examine here the scenario of the wireless relay 
communication system with three sections. In the first 
section,  Nakagami-m fading is present, in the second 
section, Rician fading exists, and there is Rayleigh fading in 
the third section. The signal envelope at the output of relay 
communication system with three sections is product of 
Nakagami-m signal envelope, Rician signal envelope, and 
Rayleigh signal envelope. By using transformation method, 
PDF of product of Nakagami-m RV, Rician RV and 
Rayleigh RV will be obtained. By using PDF, CDF and 
moments can  be evaluated. The first moment or the average 
value, the second moment or the square average value, and 
the third moment are important characteristic of  wireless 
relay communication systems.   

There are more works considering products and ratios of 
diferent random variables [5]-[8], [12]-[17]. For example in 
[14], LCR of product of N Rayleigh RVs is investigated. In 
this paper, AFD of wireless communication system operating 
over multipath Rayleigh fading is determined. Product of 
two Nakagami-m RVs is considered in [15]. LCR of product 
of two Nakagami-m variables is calculated and by using this 
formula, AFD of wireless relay communication system 
working over multipath Nakagami-m fading is evaluated. In 
that paper, RV equal to product of two Nakagami-m RVs is 
formed. This variable is known as Nakagami-m*Nakagami-
m RV.  

The PDF, CDF, and moments functions of the 
N∗Nakagami distribution are developed in closed forms 
using the Meijer’s G-function in [16]. Further, closed-form 
expressions for the system first order performance (OP, 
amount of fading, and average BEP) for several binary and 
multilevel modulation schemes working over the 
N∗Nakagami fading channel in the presence of Gaussian 
noise are derived. This is useful for designing of cascaded 
Nakagami-m fading channels. Further, in [17], PDF of the 
product of Rayleigh, exponentially, Nakagami-m and 
Gamma RVs is derived in closed form by the Mellin 
transform. In some papers, the LCR of ratio of product of 
two RVs and RV is presented, as well as the LCR of ratio of 
RV and product of two RVs.  

In this work, radio relay system with three sections will 
be analyzed. For relay systems is very important to evaluate 
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ratios and products of random variables. The paper is 
organized in four sections. After introduction, where 
previous works from this field are described, in section II, 
the derivation of the LCR of product of three RVs is 
presented. In third section, the validity of the theoretical 
results is confirmed by simulation results and parameters 
influence is analyzed. The last section is conclusion. 

II. LEVEL CROSSING RATE OF PRODUCT OF THREE RANDOM 

VARIABLES 

Nakagami-m random variable x1 follows distribution 
defined in [10 ]: 
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where Ω1 is power of x1 and m is fading parameter of x3. 

Random variable x2 follows Rician distribution [11]: 
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wherein Ω2 is power of x2 and κ is Rician factor. Rician 
factor is defined as ratio of dominant component power and 
scattering components powers.   

Random variable x3 follows Rayleigh distribution [1]: 
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and Ω3 is power of x3. 

Product of x1, x2 and x3 is: 

1 2 3x x x x .               (4) 

Then, it is valid: 

1

2 3

x
x

x x
 .             (5) 

The first derivative of x is: 

1 2 3 1 2 3 1 2 3x x x x x x x x x x      .  (6) 

Random variables 1x , 2x  and 3x have Gaussian 

distribution. Linear combination of Gaussian RVs is 
Gaussian RV. The mean signal level of x  is: 

1 2 3 1 2 3 1 2 3 0x x x x x x x x x x         (7) 

because: 

1 2 3 0x x x     .       (8) 

The variance of x is:  
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with fm being  maximal Doppler frequency. 

After substituting, the expression for variance becomes: 
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The joint probability density function of x, x , x2 and x3 is:   
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where  
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The joint probability density function of x and x is:   
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Level crossing rate of x is [18]: 
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Previous two-fold integral can be solved using Laplace 
approximation theorem for solution the two-fold integrals 
[19]:  
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where B is matrix:  
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and x20 and x30 are solution of the equations: 
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For considered case, it is: 
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The solutions of the next two equations are x20 and x30: 
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They should be introduced in (17) for solving two-fold 
integral from (18). In this manner LCR of the product of 
Nakagami-m, Rician and Rayleigh random variables will be 
obtained in closed form. 

III. NUMERICAL RESULTS 

The level crossing rate of product of Nakagami-m 
random variable, Rician RV and Rayleigh RV is shown in 
the next few figures versus resulting signal x for different 
values of fading parameters and signal powers. 

Dependence of the LCR, normalized by fm, from 
resulting signal x, for various parameters values m and Ω1 is 
presented in Fig. 1. It is possible to notice that the LCR 
increases for lower values of resulting signal and falls for 
greater values of resulting signal. All curves reach the 
maximum and start to decline. Smaller values of resulting 
signal have a greater impact to the LCR. 

LCR grows for little values of Nakagami-m small scale 
fading parameter m. The impact of resulting x on the LCR is 
bigger for smaller magnitudes of the parameter m. The LCR 
is bigger for smaller value of m.  

From this picture, the influence of the power Ω1 can be 
observed. For low values of x, LCR increases with reduction 
of power Ω1, but for bigger values of x LCR increases with 
growth of power Ω1. 

Fig. 2 shows the influence of the other two parameters: 
Rician factor κ and signal power Ω2. 

The LCR becomes bigger with enlarging of Rician factor 
κ.  The influence of x on the LCR is greater for lower values 
of Rician factor κ. The impact of Nakagami-m fading 
parameter m on the LCR is higher for bigger values of Rician 
factor κ.  From this figute one can also see that LCR is larger 
for greater values of power Ω2. 



 

Fig. 1. LCR normalized by fm for various values of parameters m and Ω1  

 

Fig. 2. LCR normalized by fm for different parameters κ and Ω2  



 

Fig. 3. LCR normalized by fm for various values of Ω3. 

In the last figure, Fig. 3, the impact of power Ω3 is 
shown. One can remark from this picture that LCR is higher 
for bigger values of Ω3 and low values of x; for higher values 
of x, LCR is greater for smaller Ω3. Small resulting signal x 
has greater impact to the LCR. 

IV. CONCLUSION 

In this article, product of Nakagami-m random variable, 
Rician and Rayleigh random variables is considered. The 
LCR of product of Nakagami-m, Rician and Rayleigh 
random variables is calculated. The obtained result can be 
used for evaluation the LCR of product of Nakagami-m and 
two Rayleigh RVs, LCR of Rician and two Rayleigh RVs 
and the LCR of product of three Rayleigh (3* Rayleigh) 
RVs. This can be achieved because Nakagami-m and Rician 
distributions are general distributions and by putting 
parameters m and κ to have a certain value, Rayleigh 
distribution can be obtained [2].  

Also, obtained results can be used for evaluation the AFD 
of relay wireless communication system with three sections 
in the presence of Nakagami-m fading in the first section, 
Rician fading in the second section and Rayleigh fading in 
the third section. To the best authors’ knowledge, the LCR of 
product of Nakagami-m random process, Rician random 
process and Rayleigh random process is not processed in 
open technical literature. Obtained results can be applied in 
performance analysis of wireless relay communication 
systems.   
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