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Abstract–In this paper, we study a single link that 
accommodates Poisson arriving calls of different service-
classes with different bandwidth requirements. The link is 
modelled as a loss system while the call admission 
mechanism is based on the Bandwidth Reservation (BR) 
policy. We name this model Erlang Multirate Loss Model 
(EMLM) under the BR policy (EMLM/BR). The BR policy 
achieves Call Blocking Probabilities (CBP) equalization 
among calls of different service-classes by reserving 
bandwidth units in favor of calls of certain service-classes. 
The existence of the BR policy in the EMLM/BR destroys 
reversibility in the corresponding Markov chains and 
therefore the steady state probabilities cannot be described 
by a product form solution. To determine CBP, we study 
and evaluate two convolution-based teletraffic loss models 
that exist in the literature. Our study shows that both 
algorithms provide CBP results of decent accuracy when 
compared to the exact CBP results.  

I. INTRODUCTION 

Teletraffic loss models based either on recursive 
formulas or on convolution algorithms provide an 
efficient way for the call-level Quality of Service (QoS) 
assessment in contemporary communication networks 
which accommodate multirate traffic. By the term 
“multirate traffic” we refer to calls of different service-
classes with different bandwidth-per-call requirements. 
The simplest multirate loss model used to analyze a 
single link that accommodates Poisson traffic is the 
classical Erlang Multirate Loss Model (EMLM) [1], [2]. 

In the EMLM, a link of capacity C  bandwidth units 
(b.u.) accommodates K different service-classes. Service-
class k calls (k=1, …, K) arrive in the link according to a 
Poisson process with arrival rate λk and require bk b.u. 
Calls compete for the available link b.u. under the 
Complete Sharing (CS) policy. According to the CS 
policy, new calls are accepted in the link if their required 
b.u. are available at the time of their arrival; otherwise 
they are blocked and lost without further affecting the 
link. Accepted calls remain in the link for an arbitrarily 
distributed service time [1]. The steady-state probabilities 
in the EMLM have a Product Form Solution (PFS). The 
latter leads to an accurate Call Blocking Probabilities 
(CBP) calculation via the classical Kaufman-Roberts (K-
R) recursive formula [1], [2] which has led to various 
extensions of the EMLM (e.g., [3]-[26]). The K-R 
formula is used to calculate recursively the link 
occupancy distribution. A different and more complicated 
approach for the CBP determination in the EMLM is 

based on the convolution algorithm [27]. The latter 
exploits the PFS of the EMLM and the principle of 
independency among service-classes and therefore the 
link occupancy distribution can be determined by 
successively convolving the link occupancy distributions 
obtained for each service-class. Contrary to the macro-
state K-R formula, the convolution algorithm keeps the 
micro-state information of the number of in-service calls 
in the link. Such information is necessary when studying 
more complicated (than the CS policy) call admission 
policies (e.g., [24], [27] - [32]).  

In this paper, we consider the EMLM under the 
Bandwidth Reservation (BR) policy (EMLM/BR). The 
BR policy is used to reserve b.u. to benefit calls of high 
bandwidth requirements and is mainly applied in a link 
when CBP equalization is required among calls of 
different service-classes. The existence of the BR policy 
in the EMLM/BR destroys reversibility in the 
corresponding Markov chains and therefore the steady 
state probabilities cannot be described by a PFS. This 
means that the CBP determination in the EMLM/BR 
based on convolution algorithms can become a quite 
complex procedure. We study and evaluate two main 
convolution algorithms that exist in the literature, named 
the Asymmetric Convolution Algorithm (ACA) [33], [34] 
and the Permutational Convolutional Algorithm (PCA) 
[35], proposed for the CBP calculation in the EMLM/BR. 
The PCA requires more convolution operations and has a 
higher time complexity compared to the ACA (see e.g., 
Table 6, pg. 85 in [35]) but according to [35] it has a 
higher accuracy (in terms of CBP results), especially for 
many service-classes.  

This paper is organized as follows: In Sections II and 
III, we review and provide insight to the ACA of [33], 
[34] and the PCA of [35], respectively. In Section IV, we 
provide analytical CBP results for both algorithms and 
compare them with the corresponding exact results. We 
conclude in Section V.   

 

II. THE ASYMMETRIC CONVOLUTION ALGORITHM  

We consider a link of capacity C b.u. that 
accommodates K different service-classes. Service-class 
k calls (k=1, …, K) arrive in the link according to a 
Poisson process with arrival rate λk, require bk b.u and 
have a BR parameter tk. The latter refers to the b.u. 
reserved to benefit calls of all other service-classes apart 
from service-class k. We denote by j the occupied link 



b.u., j = 0, …, C. Then, a new service-class k call is 
accepted in the link if k kj C b t   at the time of its 
arrival. Otherwise, the call is blocked and lost. An 
accepted call remains in the link for a generally 
distributed service time with mean 1

k
 .  

To describe the ACA, let /k k ka   be the offered 

traffic-load of service-class k and ( )kq j  (k=1, …, K) the 
link occupancy distribution assuming that only service-
class k exists in the link. Then, the ACA is described 
according to the following steps: 

Step 1: Determine ( )kq j  of each service-class k via: 

( ) (0) , for 1 and
!

i
k k

k k k
k

a C t
q j q i j i b

i b

 
     

 
      (1) 

Step 2: Let A and B be two subsets of all service-classes 
in the link. We have  , 1,  ...,  A B K  and A B . Let 

also Q(A) and Q(B) be the normalized aggregated 
occupancy distribution of the service-classes that belong 
to A, B, respectively. Assuming that 1 2 ... Kb b b   , 
then the 1st time we execute the convolution operation, 

( , )A BQ  (defined in (2)), the initial values of the subsets A, 

B are the following: A = {1}, B = {2}. The 2nd time, the 
new subsets are: A = {1, 2} and B = {3}. Finally, the (K -  
1)th time the new subsets are: A={1, 2, 3, …, K-1} and B 
= {K}. The values of ( , )A BQ are determined by: 

   ( ) ( )
( , ) ( ) ( ) ( ) ( ) ( ) ( )* *B A
A B A,B A B A,B B AQ f Q Q f Q Q                 (2) 
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x
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proportion of ( ) ( )* ,  r xQ Q r x , that contributes to 

( , )A BQ and is calculated by: 
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                          (3) 

The rationale behind (2) is the following: The term 

( ) ( )*A BQ Q refers to the case that the last accepted call is 

from a service-class that belongs to subset B. The 
opposite refers to the case of ( ) ( )*B AQ Q . Such an 

approach is intuitively based on the fact that in the 
EMLM/BR, due to the selection of the BR parameters, a 
micro-state of the form n = (n1, …, nk, …, nK), where nk is 
the number of in-service calls of service-class k in state n, 
may be reached from a new call of a certain service-class 
but not from a new call of another service-class. 

The convolution operation ( , ) ( ) ( )*A B A BQ Q Q of (2) is 

defined as: 
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where: tr = tr1 =…= trk =…= trK = C – bmax = C – bK. The 
parameter trk denotes the last state of the link where it is 
still possible to accept a service-class k call. As an 
example, consider the case where K = 3, b1=1, b2=2, b3=3 
and C = 7 b.u. The assumption that tr = tr1 = tr2 = tr3 = C 
– b3 = 4, is equivalent to the assumption that CBP 
equalization is achieved by selecting the BR parameters 
t1, t2 and t3 according to the rule: b1 + t1 = b2 + t2 = b3 = 3.  

The parameter ( , )A Bx x in (4), shows if the individual 

operations ( ) ( )( ) ( )A A B BQ x Q x are permitted from the BR 

policy point of view. Depending on the definition 
of ( , )A Bx x , we have two variations of the ACA, the 
MaxR and the MinR, determined by (5) and (6), 
respectively [34], [33]:  

   0 max( ) max( )
( , )

1
A A A B B

A B

for x tr b x x tr b
x x

otherwise


      


  (5) 

   0 min( ) min( )
( , )

1
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A B

for x tr b x x tr b
x x

otherwise


      


  (6) 

By adopting MaxR/MinR we choose as the last accepted 
call the one with the maximum/minimum bandwidth 
requirement in the subset, respectively, when the 
convolution process enters the reservation space (i.e., 
states tr + 1, tr + 2, …, C).  

Step 2 is executed K - 1 times and based on (2) we 
have a total number of 2(K - 1) convolutions in this step. 
The output of step 2 is the aggregated occupancy 
distribution of all service-classes, (1, 2,..., )KQ , defined as: 

(1,2,..., ) ACA(ACA(...(ACA({1},{2}),{3}),...,{ -1}),{ })KQ K K (7) 

Step 3: Determine the CBP of service-class k, Bk, via the 
formula: 

(1, 2,..., ) (1, 2,..., )
1 1

( ) ( )
k k

C C

k K K
j C b t j tr

B Q j Q j
     

                    (8) 

A drawback of the ACA is that it does not consider all 
possible K! sequences in the aggregation process of step 
2, but only 2K-1 sequences. As an example, consider a link 
that accommodates K = 3 service-classes. Then, 
according to step 2, the ACA starts the aggregation 
process by letting A = {1} and B = {2}. Thus: 

   (2) (1)
(1,2) (1 2) (1) (2) (1 2) (2) (1)* *, ,Q f Q Q f Q Q                      (9) 

where: 

(1) (2)1 1 2 2
(1 2) (1 2)

1 1 2 2 1 1 2 2

,, ,

a b a b
f f

a b a b a b a b
 

 
                        (10) 

The aggregation process continues by letting A = {1, 2} 
and B = {3}. Thus: 

   (3) (1,2)
(1,2,3) (1 2,3) (1,2) (3) (1 2,3) (3) (1,2)* *, ,Q f Q Q f Q Q           (11) 

where: 

(3) (1,2)3 3 1 1 2 2
(1 2,3) (1 2,3)

1 1 2 2 3 3 1 1 2 2 3 3

,, ,

a b a b a b
f f

a b a b a b a b a b a b


 

   
(12) 

Based on (9), (11) takes the form: 



    
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* * * *

, , ,
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Q f f Q Q Q f Q Q Q

f f Q Q Q f Q Q Q

 
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According to (13), it is obvious that the ACA considers 
the sequences {1, 2, 3}, {2, 1, 3}, {3, 1, 2} and {3, 2, 1} 
and omits two sequences, namely {1, 3, 2} and {2, 3, 1}. 
The sequences {1, 2, 3} and {2, 1, 3} refer to the case 
where the last accepted call is from the service-class 3. 
On the other hand, the sequences {3, 1, 2} and {3, 2, 1} 
refer to the case where the last accepted call is either 
from service-class 1 or from service-class 2.  

The fact that K! - 2K-1 sequences are not taken into 
account in the ACA, may lead to CBP results that are not 
quite close to the exact (or simulation) CBP results 
especially for many service-classes (K > 3) [35]. This 
drawback has been tackled in the PCA, at the cost of 
higher complexity, where all K! forms of aggregations 
have been considered [35].   
 

III. THE PERMUTATIONAL CONVOLUTION ALGORITHM 

Similar to Section II, we consider the EMLM/BR with 
same characteristics as in the case of the ACA. 

Then, the PCA can be described according to the 
following three steps: 

Step 1: Determine ( )kq j of each service-class k via (1). 

Step 2: To represent the K! different sequences, let O be 
a K! x K matrix defined as: 

1,1 1,2 1,

!,1 !,2 !,

K

K K K K

O O O

O O O

 
   
  


  


O                                     (14) 

Each row s of O, denoted as sO


, represents a different 
sequence and is expressed as: 

,1 ,2 ,{ , , , },  for 1 !s s s s KO O O O s K  


                       (15) 

where: , {1, 2,  ...,  }s xO K , x = 1, …, K and 

', ,s x s x
O O for 'x x .  

As an example, in the case of K = 3 service-classes, (14) 
can be written as: 

1 2 3

2 1 3

3 1 2

1 3 2

3 2 1

2 3 1

 
 
 
 

  
 
 
 
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O                                                             (16) 

Step 2a: For each row of the O matrix we have to 
calculate the occupancy distribution according to the 2K-2 

possible aggregation patterns. These patterns are dictated 
by the possible sequence of the arriving calls of each 
service class. Let m, 21 2Km   , be the mth aggregation 

of sequence s. Define now by ,s mOQ


a row vector of C+1 

elements with  , , ( ) , 0,  1,  ...,  .s m s mO OQ Q j j C 
  

 Each 

element of ,s mOQ


expresses the steady state probability of 
the link occupancy state j which is determined under the 
mth aggregation pattern of sequence s. E.g., assuming a 
system of K = 3 service-classes and based on (16), we 
have two different aggregation patterns for each row of 
O. Considering the first row of O in (16), we may first 
convolve service-classes 1, 2 and then convolve (1, 2) 
with service-class 3 (see (17) below, for m=1) or we may 
first choose to convolve 2 and 3 and then convolve (2, 3) 
with service-class 1 (see (18) below, for m=2): 

 1,1 1,1 1,1 1,1

(1*2)*3

(0), (1),..., ( ) , 1, 1O O O OQ Q Q Q C s m  
      

    (17) 

 1,2 1,2 1,2 1,2

1*(2*3)

(0), (1),..., ( ) , 1, 2O O O OQ Q Q Q C s m  
      

  (18) 

As an example, to obtain 1,1 (0)OQ


of (17) we multiply the 

normalized value of 1,2 (0)q (obtained after the 
convolution of service-classes 1, 2) with the normalized 
value of 3 (0)q (obtained in step 1 of the PCA), i.e., 

1,1

1,2 3(0) (0) (0)OQ q q 


. Similarly, to obtain 1,2 (0)OQ


of 
(18) we multiply the normalized value of 

2,3 (0)q (obtained after the convolution of service-classes 

2, 3) with the normalized value of 1(0)q (obtained in step 

1 of the PCA), i.e., 1,2

2,3 1(0) (0) (0)OQ q q 


. 

Considering the second row of O in (16), we have: 

 2,1 2,1 2,1 2,1

(2*1)*3

(0),  (1),  ...,  ( ) , 2, 1O O O OQ Q Q Q C s m  
      

    (19) 

 2,2 2,2 2,2 2,2

2*(1*3)

(0),  (1),  ...,  ( ) , 2, 2O O O OQ Q Q Q C s m  
      

  (20) 

A similar procedure is required for the remaining four 
rows of O in (16). 
Step 2b: At this point, let V be a K! x (C+1) matrix 
defined as: 

1 1 1

! ! !

(0) (1) ( )

(0) (1) ( )K K K

V V V C

V V V C

 
   
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
  


V                               (21) 

Each row s of V, denoted as sV


, expresses the link 
occupancy distribution obtained according to the 
sequence of the K service-classes determined by sO


[35]: 

2

, ,

2

1

K

s m s mO O
s

m

V Q




 
 

                                                    (22) 

where ,s mO


 is a weight factor that expresses the 

contribution of the normalized values of ,s mOQ


 in the 

value of sV


.  

Each weight factor ,s mO


 is determined as the proportion 
of the product k ka b of the service-class k involved in the 
left-hand side of an aggregation operation divided by the 
total number of service-classes involved in that 
aggregation operation.  



As an example, consider again the first row of O in (16) 

and the values of 1,1OQ


 and 1,2OQ


 obtained by (17) and 

(18), respectively. Then, according to (22), 1V


 can be 
calculated by: 

1,1 1,1 1,2 1,2
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                        (23) 

Similarly, consider the second row of O in (16) and the 

values of 2,1OQ


and 2,2OQ


obtained by (19) and (20), 

respectively. Then, according to (22), 2V


 is given by: 

2,1 2,1 2,2 2,2
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2,2

2

2 2 1 1 2 2
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                       (24) 

A similar procedure is required for the remaining four 
rows of V in (21). 
Step 3: In order to obtain the CBP of each service-class k 
via (8), we sum the corresponding unnormalized elements 
of sV


for each value of s and j = 0,1, …, C and then 

normalize the retrieved results: 
!

1

( ) ( ), for 0,1,  ,  
K

s
s

Q j V j j C


                                (25) 

{1,2, }
0

( ) ( ) ( )
C

K
j

Q j Q j Q j


                                          (26) 

  

IV.  NUMERICAL EXAMPLES - EVALUATION 

In this section, we present an application example and 
provide analytical CBP results of the ACA minR [33], the 
ACA maxR [34] and the PCA of [35]. These approximate 
CBP results (which are due to the non-reversible Markov 
chains that exist in the EMLM/BR) are compared with 
the corresponding exact CBP results. 

As an application example, we consider a link of C = 
30 b.u. that accommodates calls of K = 3 service-classes, 
with the following bandwidth-per-call requirements: b1 = 
1, b2 = 2 and b3 = 4 b.u. To achieve CBP equalization, let 
tr = 4 b.u. In addition, let 1 1 2 2 3 3: : 1:1:1a b a b a b  . This 
example, has already been presented in [35] (see Table 3 
of [35]) but we decided to present it herein since: 1) the 
PCA CBP results we obtained are not similar to those 
presented in [35] and, 2) the ACA minR and maxR CBP 
results presented in [35] are different to those obtained by 
the algorithms of [33] and [34], respectively. The main 
difference relies on the fact that compared to (2), the 
calculation of ( , )A BQ  is given by the formula 

   ( ) ( )
( , ) ( ) ( ) ( ) ( ) ( ) ( )* *A B
A B A,B A B A,B B AQ f Q Q f Q Q  , i.e., each 

term is multiplied by the opposite values of the weight 
factor f compared to (2).  

In Table I, we present for various values of 

1

/
K

k k
k

a a b C


  , the exact CBP results (2nd column), the  

PCA CBP results of [35] (3rd column), our PCA CBP 
results (4th column), the ACA minR CBP results of [35] 
(5th column), the ACA minR CBP results according to 
[33] which are verified in this paper (6th column), the 
ACA maxR CBP results of [35] (7th column) and the 
ACA maxR CBP results according to [34] which are 
verified in this paper (8th column). 

Based on the results of Table I, we conclude that: 
a) The difference between our implementation of the 
PCA and that of [35], is minor for low values of α, while 
our implementation achieves better accuracy compared to 
the exact values for low CBP values (<5%). The reason 
behind the difference between the two implementations is 
not yet clear. Based on our experience on these 
algorithms (both the ACA and the PCA), we conclude 
that they are sensitive (in terms of the obtained CBP 
results) when normalizations of the various distributions 
are included or omitted in each step. In addition, both 
algorithms are sensitive when different weight factors are 
considered.  
b) The ACA maxR algorithm of [34] provides much 
better results than the ACA maxR algorithm as presented 
in [35]. The opposite behavior is observed in the case of 
the ACA minR, i.e., a better CBP approximation is 
achieved by the ACA minR of [35] compared to that of 
[33]. 
c) Our implementation of the PCA does not reveal a 
superiority of the PCA compared to the ACA maxR of 
[34], especially for K = 3 service-classes and medium to 
heavy traffic load conditions (CBP > 10%). 

As a general conclusion, our study shows that for low 
CBP values (<5%) both the ACA maxR of [34] and the 
ACA minR as presented in [35] as well as the PCA 
behave quite satisfactory. In addition, both types of 
algorithms (ACA and PCA) keep the micro-state 
information of the number of in-service calls in the link 
which is quite important when more complicated (than 
the BR policy) call admission policies should be studied. 
On the other hand, in the EMLM/BR it is still 
questionable (at least to the authors) whether the complex 
convolution algorithms should be preferred instead of the 
efficient yet recursive Roberts’ formula [36].      
   

V.  CONCLUSION 

In this paper, we study and evaluate two convolution 
algorithms, the ACA and the PCA, that exist in the 
literature for the CBP calculation in the EMLM/BR. Our 
study shows that both algorithms provide quite 
satisfactory CBP results compared to the exact values for 
light traffic load conditions. As a future work, we intend 
to study convolution algorithms under the case of quasi-
random traffic, i.e., traffic generated by a finite number 
of users and a combination of the BR policy with the 
threshold policy. The latter is used to block a new call of 
a service-class when the number of in-service calls (of 
that service-class) plus the new call extends a threshold.  
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Table I: CBP results for the application example.  

a 
Exact 

solutions 
PCA 
[35] 

PCA 
(this paper) 

ACA 
MinR 
[35] 

 

ACA 
MinR 
[33] 

ACA 
MaxR 
[35] 

ACA 
MaxR 
[34] 

0.2 5.000e−5 4.500e−5 4.612e−5 4.600e−5 3.634e−5 5.100e−5 4.645e−5 

0.3 9.470e−4 8.540e−4 8.890e−4 8.900e−4 6.827e−4 9.920e−4 8.864e−4 

0.4 6.076e−3 5.611e−3 5.883e−3 5.920e−3 4.429e−3 6.616e−3 5.802e−3 

0.5 2.109e−2 2.002e−2 2.110e−2 2.136e−2 1.568e−2 2.385e−2 2.062e−2 

0.6 4.962e−2 4.834e−2 5.115e−2 5.195e−2 3.789e−2 5.799e−2 4.968e−2 

0.7 9.029e−2 9.004e−2 9.550e−2 9.713e−2 7.114e−2 1.084e−1 9.258e−2 

0.8 1.385e−1 1.408e−1 1.494e−1 1.519e−1 1.128e−1 1.694e−1 1.451e−1 

0.9 1.895e−1 1.954e−1 2.073e−1 2.105e−1 1.593e−1 2.346e−1 2.022e−1 

1.0 2.397e−1 2.497e−1 2.647e−1 2.681e−1 2.076e−1 2.988e−1 2.597e−1 

1.1 2.872e−1 3.014e−1 3.190e−1 3.222e−1 2.555e−1 3.589e−1 3.149e−1 

1.2 3.312e−1 3.492e−1 3.689e−1 3.715e−1 3.016e−1 4.136e−1 3.666e−1 

1.3 3.714e−1 3.927e−1 4.141e−1 4.156e−1 3.451e−1 4.624e−1 4.139e−1 

1.4 4.079e−1 4.320e−1 4.546e−1 4.548e−1 3.856e−1 5.057e−1 4.570e−1 

1.5 4.409e−1 4.674e−1 4.909e−1 4.896e−1 4.230e−1 5.438e−1 4.958e−1 
 
 


