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Marko Panić∗, Dejan Vukobratovic†, Vladimir Crnojević∗ and Aleksandra Pižurica‡
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Abstract—Recent work on compressed sensing in magnetic
resonance imaging (CS-MRI) indicates benefits of modelling
the structure of sparse coefficients. Comprehensive studies are
available for tree-structured models. Much less work has been
done on using statistical models for intra-scale (spatial) depen-
dencies, like Markov Random Field (MRF) models in CS-MRI,
although initial studies showed great potentials. We present here
an efficient greedy algorithm with MRF priors and demonstrate
encouraging performance in comparison to related methods,
including those based on tree-structured sparsity.

I. INTRODUCTION

Compressed sensing (CS) for magnetic resonance imaging
(MRI), dubbed CS-MRI, typically solves the problem

min
x

1

2
||Ax− y||22 + τφ(Px) (1)

where x ∈ CN is the ideal image and y ∈ CM are measure-
ments obtained through partially observed Fourier transform
A ∈ CM×N ,M � N , with added noise n ∈ CM [1], [2].
P ∈ CD×N denotes a sparsifying transform, τ > 0 is a
parameter and φ : CD 7→ R ∪ {−∞,+∞} is a regularization
function. When P is a wavelet-like transform, φ is typically
the `1 norm: φ(θ) = ||θ||1. An improved iterative solver with
a usage of tight frames such as contourlets, shift-invariant
discrete wavelet (SIDWT) and patch based directional wavelet
(PBDW) and `1 norm regularization is reported in [3]. Another
common regularization is Total Variation (TV), where P
is a discrete gradient operator. Compound regularization (a
combination of `1 and TV) is often used as well [1], [2],
[4], [5]. Recent works incorporate modelling the structured
sparsity, and in particular wavelet tree models have been
proved beneficial in CS-MRI [6], [7]. An elegant algorithm
LaMP (Lattice Matching Pursuit), which incorporates mod-
elling of the spatial support of sparse images by a Markov
Random Field (MRF), into a greedy solver was introduced in
[8]. LaMP is not directly applicable to images that are not
sparse in the canonical domain (and most MRI images are
not). A related algorithm LaSB (Lattice Split Bregman) [9],
which combines MRF modelling of the subband data with an
augmented Lagrangian method showed promising results in
MRI. It was unclear so far whether the success of LaSB could
also be reached with a simpler, greedy type of methods, and it

was also not clear how any of these methods would compare to
alternative wavelet-tree sparsity methods [6], [7]. We address
these questions and design a fast and simple MRF-based
method for CS-MRI, demonstrating excellent performance.

A preliminary version of this work has been reported as
an abstract only, in [10]. Here we elaborate the method,
explaining the details of the algorithm and we provide for
the first time its thorough analysis and evaluation on real
MRI images. This work complements our recently reported
alternative method based on optimisation theory [11]. Our new
algorithm, proposed in this paper is conceptually much simpler
and easier to implement and analyse compared to [11], while it
provides similar improvement over the state-of-the-art wavelet-
tree sparsity methods.

II. A GREEDY CS-MRI ALGORITHM WITH MRF PRIORS

Let us first revisit briefly the original Lattice Matching
Pursuit (LaMP) algorithm of [8], before analysing possible
extensions to make it applicable to MRI. Our new algorithm,
inspired by this analysis, will follow then.

The original LaMP, with the pseudocode (using our nota-
tion) in Alg. 1, assumes that the image is sparse in the canon-
ical domain. Its main idea is to incorporate the estimation of
the likely support s of the actual signal into the matching
pursuit iterations. They utilized a MRF prior or equivalently,
according to the Hammersley-Clifford theorem [12], a Gibbs
distribution PS(s) for a support s

PS(s) =
1

Z
e−H(s)/T (2)

where the energy H(s) is a sum of clique potentials over
all possible cliques: H(s) =

∑
c∈C Vc(s). The normalizing

constant Z =
∑

s∈L e
−H(s)/T is called the partition function

and the temperature T controls the peaking in the probability
density [12]. For an energy H(s) an Ising model defined on
a rectangular lattice with labels si ∈ {−1, 1} is used, with
the single V1(si) = αsi and pairwise V2(si, sj) = βsisj
potentials

H(s) =
∑
i

αsi +
∑
〈i,j〉∈C

βsisj (3)



Fig. 1. Several sagittal slices from our MRI data set comprising 248 slices.

where β and α are the parameters of the Ising model, con-
trolling the strength of the pair-wise clique potentials and the
preference of one type of labels over the other, respectively.1

In particular, Step 4 in each iteration k of Alg. 1 assigns to
s{k} the maximum a posteriori (MAP) estimate of the support
of the temporary signal estimate x

{k}
t , assuming a MRF prior

PS(s) for the support. With a homogeneous Ising model and
using the common conditional independence assumption for
the likelihood p(xt|s) =

∏
i p([xt]i|si), the MAP estimate of

the support of x{k}t (denoted as MAP-support{x{k}t } in Alg. 1)
is:

s
{k}
MAP = max

s∈[−1,1]N

∑
〈i,j〉

βsisj +
∑
i

[αsi + log(p([x
{k}
t ]i|si)]

The pseudo-inversion A† of the measurement matrix (Step
5) is then applied only for the columns of A selected by s{k}.
Additional pruning to K largest signal components (Step 6)
yields the signal estimate x{k}.

This algorithm is directly applicable to the problem (1),
only with P = I, where I is the identity matrix. We need to
extend it such that it works in the case where P corresponds to
a wavelet-like transform. A possible extension, which would
allow applying LaMP to CS-MRI would be to replace steps
4-6 with:

θ
{k}
t = Px

{k}
t ; s{k} = MAP-support{θ{k}t } (4a)

θ
{k}
t′

= PA†y; t[s{k} = 1] = θ
{k}
t′

[s{k} = 1] (4b)

θ{k} = Prune(t,K); x{k} = PHθ{k} (4c)

Two important problems with this extension are: (i) the
calculation of PA†y is costly, both in terms of the computation
time and memory requirements and (ii) determining K in
each subband is not trivial. Hence, we propose a simplified,
greedy algorithm where the computation of the pseudo inverse
is avoided by replacing θ

{k}
t′

in (4b) by θ
{k}
t and by excluding

the additional pruning step (4c) (the sparseness is guaranteed
already by the estimated support s{k} using the right parame-
ters of the prior MRF model). Unlike in [9], we allow different
a priori probabilities α 6= 0, so that we can enforce the sparsity
of the supports.

The proposed greedy algorithm named GreeLa (Greedy
Lattice regularization) is summarized in Alg. 2. We employ
the likelihood model from [9]. Various inference algorithms

1In [8], a non-homogeneous model is allowed, with variable parameters
βi,j and αi depending on the spatial position, but this is not relevant here.

Fig. 2. An MRI image from [3].

Fig. 3. Examples of sampling trajectories used in our experiments. Left:
radial. Right: random.

can be utilized to find the MAP estimate in step 5 of GreeLa,
e.g., Iterative Conditional Modes (ICM) [13], Graph Cuts
[14], loopy belief propabation (LBP) [15], and Markov Chain
Monte Carlo (MCMC) samplers, such as Metropolis and Gibbs
sampler [12]. We opted for the Metropolis sampler due to its
flexibility and efficiency in this application. The Metropolis
sampler starts from some initial configuration and in each step
it switches a randomly chosen label si in the current mask s to
produce the so-called “candidate” mask sC . The candidate gets
accepted or not based on the change in the posterior probability
PS|Θ(sC |θ)/PS|Θ(s|θ), which effectively reduces to

r =

(
pθi|Si

(θi | sCi = 1)

pθi|Si
(θi | si = −1)

)λ
exp

{
2α+ 2β

∑
j∈Ni

2sj

}
(5)

when sCi = 1 and to 1/r when sCi = −1. Practically,
the change is accepted if r exceeds a randomly generated
number drawn from a uniform distribution on [0, 1]. Parameter
λ > 0 effectively simulates sampling at different temperatures;
for details see [16]. This inference algorithm is in fact a
step of the simulated annealing algorithm from [17] for a
particular temperature — one could apply simulated annealing
by changing gradually λ although we didn’t do it in our
experiments. Although there is no theoretical guarantee for



Algorithm 1 LaMP [8]

Input: k = 1,y,K,x{0}, t = 0
1: repeat{Matching Pursuit Iterations}
2: r{k} = y −Ax{k−1}

3: x
{k}
t = AHr{k} + x{k−1}

4: s{k} = MAP-support{x{k}t }
5: t = 0; t[s{k} = 1] = A†[s{k} = 1, :]y;
6: x{k} = Prune(t,K)
7: k = k + 1
8: until Maximum iterations or ‖r{k}‖ ≤ threshold

Algorithm 2 The proposed algorithm: GreeLa

Input: k = 1,y,x{0}, t = 0
1: repeat
2: r{k} = y −Ax{k−1}

3: x
{k}
t = AHr{k} + x{k−1}

4: θ
{k}
t = Px

{k}
t

5: s{k} = MAP-support{θ{k}t }
6: t = 0; t[s{k} = 1] = θ

{k}
t [s{k} = 1]

7: θ{k} = t,x{k} = PHθ{k}

8: k = k + 1
9: until Maximum iterations or ‖r{k}‖ ≤ threshold

the convergence at this point, the proposed method converges
in practice relatively fast.

III. EXPERIMENTS AND DISCUSSION

Here we report the results of extensive experiments on
different MRI images, including an MRI data set (brain scan)
acquired on a Cartesian grid at the Ghent University hospital
(UZ Gent)2, also used in [9], [18]. We show the results on
248 sagittal slices from this data set (each slice is a 256×256
image, and in a Fig. 1 we show some of them). We provide
results of comparison with the pFISTA method [3] on an
image used in [3]. The results are reported for simulated
radial and random undersampling trajectories in Fig. 3. For
the sparsifying transform we used the non-decimated wavelet
transform with 3 scales and with 3 orientations per scale (fine-
to-coarse) in all our experiments. We compare the results to
LaSB [9], and to state-of-the art methods FCSA [4], FCSANL
[19] and WaTMRI [7] with the original implementations3. All
these methods, except LaSB, employ a compound regular-
ization. FCSA combines TV and `1 norms while FCSANL
combines non-local TV and `1 norm. WaTMRI besides TV
and `1 norm involves overlapping groups in regularization as
a approximation of tree-structured sparsity. Finally we include
results of image reconstruction of pomelo fruit from real
radially acquired measurements provided by Bio-Imaging Lab
in Antwerp. The MRF parameters were optimized separately
for LaSB (α = .017, β = .07) and for GreeLa (α = 1e − 4,
β = .34) and such as are used in all presented results.

2Data acquired thanks to Prof. Dr. Karel Deblaere at the Radiology
Department of UZ Gent.

3http://ranger.uta.edu/∼huang/index.html

Fig. 4. Top left and Top right: PSNR and SSIM for the reconstructions of
one slice (the second in Fig. 1) at different sampling rates. Bottom left and
Bottom right: Reconstruction performances in PSNR and SSIM, respectively
on the same slice with 20% measurements in 150 iterations.

Fig. 5. PSNR values obtained from 248 MRI brain slices from the first data
set, with radial sampling. Mean PSNR (Left) and the PSNR distribution for
GreeLa (Right). The results are presented as a box plot: the edges of the each
box represents 25th and 75th percentile while the central mark (red line) in
the box is median. The whiskers extend to the most extreme PSNR values
which are not considered outliers while outliers are plotted separately with
red crosses.

Fig. 4 shows the Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) for one slice (the second
image in Fig. 1), with sampling rate (SR) ranging from 14%
to 48%, and the evolution of the PSNR and SSIM per iteration
for a particular SR (20%). The MRF-based methods GreeLa
and LaSB achieve a consistent and significant improvement
in PSNR (more than 4 dB) compared to WaTMRI, FCSA
and FCSANL for all SR values, and they also approach
convergence in fewer iterations. GreeLa yields slightly higher
PSNR than LaSB and shows a more stable behaviour in the
first 20 iterations (see bottom left in Fig. 4). In case of SSIM
measure LaSB and GreeLa outperform compared methods
significantly for all sampling rates (seethe top right diagram
in Fig. 4). LaSB and GreeLa reached SSIM above 0.85 for all



Fig. 6. Reconstructed image (the second in Fig. 1) from 20% of measurements
using radial trajectory. Top GreeLa and Bottom WaTMRI algorithm. The
images on the right show reconstruction errors.

Fig. 7. PSNR for the reconstructions of the test image in Fig. 2 for different
sampling trajectories. Left: radial and Right: random with the same sampling
rate of 30%.

SR, GreeLa even more than 0.9 for a SR of 14%. For SR of
20%, LaSB and GreeLa reached the SSIM above 0.9 in less
than 20 iterations (see bottom right in Fig. 4) while among the
compared methods WaTMRI performed best with SSIM above
0.65 after 150 iterations. This significant structural difference
in reconstruction for a low SR is presented in Fig. 6.

We show results of reconstruction of all 248 MRI sagittal
slices from our dataset in Fig. 5 with SR=48%. Here we show
only comparison with WaTMRI, since it outperforms FCSA
and FCSANL on slices from this data set (see Fig. 4). The
conclusions are as follows: although WaTMRI increased its
performance on average, GreeLa and LaSB yield a superior
PSNR and converge in fewer iterations. A more stable be-
haviour of GreeLa compared to LaSB and slightly better PSNR
are again observed.

We next compared GreeLa with pFISTA [3] using the
image from [3] (see Fig. 2). We now use random and radial
sampling trajectory with the sampling rate of 30%. From the

Fig. 8. Pomelo experiment. The first column top to bottom: reference image
obtained from 100% of measurements, reconstructions from 20 % sampling
rate using GreeLa and WaTMRI respectively. The second column top to
bottom: Obtained SSIM for different sampling rates, followed by properly
scaled error according to the corresponding reconstructions.

left diagram in Fig. 7 for the case of radial sampling trajectory,
GreeLa reaches only slightly higher PSNR (35.3 dB) compared
to the best version of pFISTA (35.1 dB). However, in the case
of random sampling (the right-side diagram in Fig. 7), GreeLa
yields a huge improvement of more than 6 dB compared to
best performing pFISTA variant.

Next we perform experiments on a real MRI data set
with radial acquisition in k-space. This is a scan of pomelo,
acquired in the BioImaging Lab at the University of Antwerp
(see Fig. 8). The data consist of 1608 radial lines, each with
1024 samples. We form under-sampled versions by leaving out
some of the radial lines. In particular, we aim to implement
undersampling based on the golden ratio profile spacing [20],
which guarantees a nearly uniform coverage of the space for
an arbitrary number of the remaining radial lines. Starting
from an arbitrary selected radial line, each next line is chosen
by skipping an azimuthal gap of 111.246◦. In practice we
cannot always achieve this gap precisely (since we have a
finite, although large, number of lines to start with). Therefore
we choose the nearest available radial line relative to the
position obtained after moving. Since we deal here with non-
uniformly sampled k-space data, we need to employ the non-



uniform FFT procedures [20], which are commonly used in
MRI reconstruction and readily available. In the reconstruction
we include weights on non-uniform measurements based on
an area of Voronoi cells around each sample point. In [21] is
reported that using Voronoi weights as a measure of the local
sampling density is very reliable. The three reference methods
(WaTMRI, FCSA and FCSANL) give similar results on this
image, so we choose for comparison WaTMRI. Fig. 8 shows
visual comparison and SSIM values for GreeLa and WaTMRI.
For all sampling rates, the proposed method GreeLa outper-
form WaTMRI. Given that the new algorithm is conceptually
simpler, easier to implement and optimize, these results are
highly encouraging.

IV. CONCLUSION

The presented work shows great potential of using MRF-
based spatial context modelling in MRI reconstruction. The
proposed algorithm GreeLa as an extension of the LaMP
method for images that are non sparse in the canonical domain,
outperforms state-of-the-art methods for MRI reconstructions
and shows stable behaviour compared to the related MRF-
based method LaSB. Moreover, significant improvements in
the reconstruction performance are achieved compared to
alternative methods based on wavelet-tree sparsity as well
as compared to state-of-the-art method pFISTA. Additional
complexity resulting from the MRF model is compensated
by significant gains in terms of PSNR, SSIM and visual
assessment.
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sensing in MRI with a markov random field prior for spatial clustering of
subband coefficients,” in 24th European Signal Processing Conference,
EUSIPCO 2016, Budapest, Hungary, August 29 - Sept. 2, 2016.

[12] S. Z. Li, Markov random field modeling in image analysis. Springer
Science & Business Media, 2009.

[13] J. Besag, “On the statistical analysis of dirty pictures,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 259–302, 1986.

[14] V. Kolmogorov and R. Zabih, “What energy functions can be minimized
via graph cuts ?” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, pp. 65–81, 2004.

[15] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation
for approximate inference: An empirical study,” in Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., 1999, pp. 467–475.

[16] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, “A joint inter-and
intrascale statistical model for Bayesian wavelet based image denoising,”
Image Processing, IEEE Transactions on, vol. 11, no. 5, pp. 545–557,
2002.

[17] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative stud-
ies,” J. Stat. Phys., vol. 34, no. 5-6, pp. 975–986, 1984.

[18] J. Aelterman, H. Q. Luong, B. Goossens, A. Pižurica, and W. Philips,
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