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Abstract—Nowadays ransomware presents a huge and the
fastest growing problem for all types of users from small
households to large corporations and government bodies. Modern
day ransomware families implement sophisticated encryption and
propagation schemes, thus limiting chances to recover the data
almost to zero. In order to design and develop appropriate
detection and mitigation mechanisms it is important to perform
ransomware analysis and indemnify its features. In this work, we
present our ransomware analysis results focusing on the infamous
WannaCry ransomware. In particular, the presented research
examines the WannaCry behaviour during its execution in a
purpose-built virtual lab environment. We perform static and
dynamic analysis using a wide range of malware analysis tools.
The obtained results can be used for developing appropriate
detection and mitigation mechanisms for WannaCry or other
ransomware families that exhibit similar behaviour.
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I. INTRODUCTION

Currently ransomware threat is considered as the main
moneymaking scheme for cyber criminals and the key threat
to the Internet users [1], [2]. Starting from relatively simple
fake antivirus applications in 2008, ransomware has evolved
during the time and emerged into sophisticated forms such as
crypto type ransomware. The apotheosis of this evolution is
the occurrence of a new type of ransomware which combines
the usage of exploits with worm-like spreading mechanisms
to propagate itself in both internal and external networks.
Moreover, the emergence of new types of ransomware, such
as WannaCry, showed that ransomware keeps evolving and
cyber criminals are upgrading the ransomware code with more
sophisticated features, such as worm propagation components
and public-key encryption mechanisms. Therefore, from the
research perspective, the design of new countermeasures apart
from traditional security approaches, is considered as important
and trending task in this field. Such designs, however, require a
comprehensive analysis of ransomware features and behaviour
which typically involve a wide range malware analysis tools.

In this work, we have performed a comprehensive analysis
of the infamous WannaCry ransomware. We present both static
and dynamic analysis results. The presented techniques are
applicable also in the cases of other ransomware families with
characteristics similar to WannaCry, such as worm-spreading
mechanisms and public-key based encryption. In particular, the
presented research examines the WannaCry behaviour during
its execution in a safe purpose-built virtual lab environment at
the University of York. The obtained results can be used for

designing and developing effective ransomware detection and
mitigation mechanisms.

The rest of paper is organized as follows. In Section II, we
present the relevant background information on ransomware
in general and on WannaCry in particular. In Sections III, IV,
and V, we present the main findings from our conducted static
and dynamic analysis of WannaCry, including its inherent
network indicators. Finally, Section VI draws the conclusions
and discusses potential future directions.

II. BACKGROUND

A. The Basics of Ransomware

Ransomware presents a type of malicious software that
prevents or limits users from accessing their system, either
by locking the screen or by encrypting files, until a ransom is
paid [3]. Typically, two types of ransomware are distinguished:
lockers and cryptors [2]. Lockers present a less sophisticated
type of ransomware which simply locks the device’s user
interface, preventing from logging in and accessing programs
and data. In most cases it leaves the user with very few
capabilities such as allowing the victim just to communicate
with the attacker and pay the ransom. Lockers usually can be
removed cleanly, as they leave the underlying system and files
untouched. This makes lockers less effective at extracting ran-
som payments compared with their more destructive relatives
- cryptors.

On the other hand, cryptors represent an advanced type of
ransomware which aims at encrypting specific files of the in-
fected system. Cryptors use a variety of different cryptographic
algorithms, including both symmetric and public-key based.
Cryptors that rely on public-key encryption are particularly
difficult to mitigate, since the encryption keys are stored
in a remote command and control (C&C) server. Cryptors
typically include a time limit for ransom to be paid and provide
users with a special website to purchase cryptocurrency (e.g.,
Bitcoins) and step-by-step instructions on how to pay the
ransom. The lifecycle of modern day ransomware typically
consists of the following steps [4]: distribution, infection, com-
munications, file search, file encryption, and ransom demand.

B. The Basics of WannaCry

WannaCry ransomware (also known as Wana Decrypt0r,
WCry, WannaCry, WannaCrypt, and WanaCrypt0r) was ob-
served during a massive attack across multiple countries on
12 May 2017 [5]. According to the multiple reports from



security vendors, in total 300 000 systems in over 150 countries
had been severely damaged. The attack affected a wide range
of sectors, including healthcare, government, telecommunica-
tions, and gas/oil production.

A difficulty of protecting against WannaCry lies in its
ability to spread itself to other systems by using a worm
component. This feature makes the attacks more effective and
requires defense mechanisms that can react quickly and in real
time. Furthermore, WannaCry has an encryption component
that is based on public-key cryptography.

During the infection phase, WannaCry uses the EternalBlue
and DoublePulsar exploits, that were allegedly leaked in April
2017 by a group called The Shadow Brokers. EternalBlue
exploits the server message block (SMB) vulnerability that
was patched by Microsoft on March 14, 2017 and has been
described in the security bulletin MS17-010 [6]. This vulner-
ability allows the adversaries to execute remote code on the
infected machines by sending specially crafted messages to
an SMBv1 server, connecting to TCP ports 139 and 445 of
unpatched Windows systems. In particular, this vulnerability
affects all unpatched Windows versions starting from Windows
XP to Windows 8.1, except for Windows 10.

DoublePulsar is a persistent backdoor that can be used
to access and execute code on previously compromised sys-
tems, thus allowing the attackers to install additional malware
on the system. During the distribution process, WannaCry’s
worm component uses the EternalBlue for the initial infection
through the SMB vulnerability by actively probing appropriate
TCP ports and if successful, tries to implant the DoublePulsar
backdoor on the infected systems.

III. WANNACRY STATIC ANALYSIS

In this section, we present our findings from static analysis
of WannaCry. To perform the analysis, two virtual machines
(VMs) were used. The characteristics of the host machine
are: Intel Core i7-4700MQ 2.40 GHz and 16 GB RAM. The
1st VM was running Windows 7 SP1 and was infected with
WannaCry. The 2nd VM was running REMnux [7], which
is a free Linux toolkit for reverse-engineering and malware
analysis.

Samples of WannaCry were obtained from VirusShare [8].
In particular, we analyzed two executable files: the worm
component and the encryption component (Table I). Below
we describe our main findings.

Analysis with Pestudio tool [9] has revealed that the worm
and the encryption components contain dynamic-link libraries
(DLLs), as shown in Tables II and III. During its execution,
the worm invokes iphlpapi.dll in order to retrieve network
configuration settings for the infected host. The kernel32.dll
and msvcrt.dll are two most invoked libraries by the encryption
component. This may indicate that the main WannaCry en-
cryption functionality was implemented by these two libraries.
To confirm this, the imported functions of the libraries were
observed with Pestudio. As it is shown in Tables IV and V, in
general WannaCry uses Microsoft’s crypto, file management
and C runtime file application programming interfaces (APIs).
The Crypto API library is used to generate and manage random
symmetric and asymmetric cryptographic keys.

TABLE I. WANNACRY COMPONENTS.

Worm Component
MD5 db349b97c37d22f5ea1d1841e3c89eb4
SHA1 e889544aff85ffaf8b0d0da705105dee7c97fe26

SHA256 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa
614ea04703480b1022c

File Type PE32 executable (GUI) Intel 80386, for MSWindows
Encryption Component

MD5 84c82835a5d21bbcf75a61706d8ab549
SHA1 5ff465afaabcbf0150d1a3ab2c2e74f3a4426467

SHA256 ed01ebfbc9eb5bbea545af4d01bf5f107166184048043
9c6e5babe8e080e41aa

File Type PE32 executable (GUI) Intel 80386, for MSWindows

TABLE II. DLLS INVOKED BY WANNACRY WORM COMPONENT.

Library Imports Description
ws2 32.dll 3 Windows Socket 2.0 32-bit
iphlpapi.dll 2 IP Helper API
wininet.dll 3 Internet Extensions for Win32
kernel32.dll 32 Windows NT BASE API Client
advapi32.dll 11 Advanced Windows 32 Base API
msvcp60.dll 2 Windows NT C++ Runtime Library
msvcrt.dll 28 Windows NT CRT

TABLE III. DLLS INVOKED BY WANNACRY ENCRYPTION
COMPONENT.

Library Imports Description
kernel32.dll 54 Windows NT BASE API Client
advapi32.dll 10 Advanced Windows 32 Base API
user32.dll 1 Multi-UserWindows USER API Client
msvcrt.dll 49 Windows NT CRT

TABLE IV. WANNACRY WORM COMPONENT FUNCTIONS.

Function Location
GetCurrentThread 0xa53a
GetStartupInfoA 0xa97a

StartServiceCtrDispatcherA 0xa6f6
RegisterServiceCtrDispatcherA 0xa6d8

CreateServiceA 0xa688
StartServiceA 0xa662

CryptGenRandom 0xa650
CryptAcquireContextA 0xa638

OpenServiceA 0xa714
GetAdaptersInfo 0xa792

InternetOpenUrlA 0xa7c8

TABLE V. WANNACRY ENCRYPTION COMPONENT FUNCTIONS.

Function Location
OpenMutexA 0xda84

GetComputerNameW 0xd8b2
CreateServiceA 0xdc2a
OpenServiceA 0xdc62
StartServiceA 0xdc52

CryptReleaseContext 0xdc14
RegCreateKeyW 0xdc04

fopen 0xdcd4
fread 0xdccc
fwrite 0xdcc2
fclose 0xdcb8

CreateFileA 0xd922
ReadFile 0xd964



IV. WANNACRY DYNAMIC ANALYSIS

In this section, we present our findings from dynamic
analysis of WannaCry. To this end, a virtual testbed of Fig.
1 was built. In particular, a custom network VMnet 5 -
192.168.180.0/24 was created with the Virtual Network Editor
option in VMWare hypervisor. This scheme allows observing
domain name system (DNS) queries made by WannaCry
during the infection and replication process, as performed by
the worm component across the internal and external networks
via port 445 of SMBv1 protocol. The REMnux machine acts
as DNS and HTTP server, and is able to intercept all network
communications using Wireshark. DNS and HTTP services in
REMnux were enabled using the FakeDNS and HTTP Daemon
utilities, respectively.

Our dynamic analysis has revealed that, upon startup, the
worm component tries to connect to the following domain,
using the InernetOpenUrl function:

www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com

The aforementioned domain is a kill-switch domain. That
is, if the domain is active, the worm component stops running.
On the other hand, if the worm component cannot establish a
connection with this domain (e.g., if the domain is not active
or if there is no connectivity), it continues to run and registers
itself as a “Microsoft Security Center (2.0) Service” mssecsvs
2.0 process on the infected machine.

The FakeDNS utility at REMnux captures the malicious
DNS request on port 80 (Fig. 2), while Wireshark shows (Fig.
3) the DNS packet query field from the infected machine
(IP 192.168.180.130) to the DNS server on REMnux (IP
192.168.180.128).

After installing itself as a service, the worm component
extracts the hardcoded R resource and then copies it to
C:\Windows\taskche.exe. The R resource represents the binary
of the WannaCry encryption component. During its execution
the encryption component checks if one of the following
mutual exclusion objects (mutexes) exists:

GlobalnMsWinZonesCacheCounterMutexA

GlobalnMsWinZonesCacheCounterMutexW

MsWinZonesCacheCounterMutexA

If the mutex is present on the system, then the encryption
component automatically stops without taking any further
actions. Otherwise, the encryption process starts. To encrypt
each file, a different 16-byte symmetric AES key is generated
using the CryptGenRandom function. Then, every generated
AES key is encrypted with the public RSA key (which is
part of the encryption component) and stored inside the file
header starting with WANACRY! string value. Encrypted files
are renamed and added with the .WNCRY file extension.
The encryption component contains a password-protected ZIP
archive. We managed to obtain the password, “WNcry@2ol7”,
by disassembling the encrypter with the IDA Pro tool [10] (see
Fig. 4). The contents of the ZIP archive are summarized in
Table VI and described below:

• msg is a folder that contains a list of rich text format
(RTF) files with wnry extension. These files are the
readme instructions used to show the extortion mes-
sage to the victim in different languages, based on the

Fig. 1. Testbed for dynamic WannaCry analysis.

information obtained from the system by malicious
WannaCry functions.

• b.wnry is an image file used for displaying instructions
for the decryption of user files. It starts with 42 4D
strings, which indicates that this file is a bitmap image.

• c.wnry contains a list of Tor addresses with .onion
extension and a link to a zipped installation file of the
Tor browser from Tor Project [11].

• r.wnry is a text file in English with additional de-
cryption instructions to be used by the decryption
component (the u.wnry file mentioned below).

• s.wnry file is a ZIP archive (HEX signature 50 4B 03
04) which contains the Tor software executable. This
executable has been obtained with the assistance of
the WinHex tool [12] by saving raw binary data with
.zip extension.

• t.wnry is an encrypted file with WANACRY! encryption
format. The file header starts with the WANACRY!
string.

• taskdl.exe is a supporting tool for the deletion of files
with .WNCRY extension. By observing the properties
of the file, the following masquerade description can
be found: “SQL Client Configuration Utility”.

• taskse.exe is a supporting tool for malware execu-
tion on remote desktop protocol (RDP) sessions. The
following file description was identified:“ waitfor -
wait/send a signal over a network”.

• u.wnry is an executable file (HEX signature 4D 5A)
with name “@WanaDecryptor@.exe”, which repre-
sents the decryption component of WannaCry.



Fig. 2. FakeDNS capture of the malicious DNS request.

Fig. 3. Wireshark capture of the malicious DNS request.

Our dynamic analysis has also revealed that, to achieve
persistence on the infected machine, WannaCry performs the
following actions:

• Creates an entry in the Windows registry to ensure
that it executes every time the machine is restarted.

• Attempts to achieve memory persistence by adding
itself to the AutoRun feature of Windows.

• Uses Windows “icacls” command to grant itself a full
access to all files on the machine.

• Deletes all backup (shadow) copies and tries to pre-
vent being booted in safe mode by executing several
commands in Windows command line.

• Deletes all backup catalogs.

• By using Winsdows command line, creates a VBScript
program which generates a single shortcut of WanaDe-
cryptor@.exe decrypter file.

• Tries to kill SQL and MS Exchange database pro-
cesses by executing several commands in Windows
command line.

V. WANNACRY COMMUNICATIONS

After performing initial interactions and checking connec-
tivity with the kill-switch domain, the worm functionality
is established by initiating the mssecsvs 2.0 service. This
service tries to spread WannaCry’s payload through the SMB
vulnerability on any vulnerable system.

In order to perform this, WannaCry creates two separate
threads that simultaneously replicate the payload in internal
(local) and external networks. In the internal network, before
starting the propagation process, the worm component obtains
the IP addresses of local network interfaces by invoking the
GetAdaptersInfo function and determining the existing subnets.

Fig. 4. Password for a ZIP archive in the encryption component.

Fig. 5. WannaCry internal network traffic attempting the SMB exploit.

TABLE VI. FILES IN THE PASSWORD PROTECTED ZIP ARCHIVE.

Name Size (bytes) Modified
msg 1,329,657 2017-05-11

b.wnry 1,440,054 2017-05-11
c.wnry 780 2017-05-11
r.wnry 864 2017-05-10
s.wnry 3,038,286 2017-05-09
t.wnry 65,816 2017-05-11

taskdl.exe 20,480 2017-05-11
taskse.exe 20,480 2017-05-11

u.wnry 245,760 2017-05-11

After that, the worm component tries to connect to all pos-
sible IP addresses in any available local network, on TCP port
445 (the default port for SMB over IP service). If successful,
the worm component attempts to exploit the service for vul-
nerability described in MS17-010 [6]. During our experiments,
connection attempts were observed with Wireshark in REM-
nux, when the infected machine (IP 192.168.180.130) sent
SMB probe packets to a Windows host (IP 192.168.180.134),
as shown in Fig. 5.

At the same time, the worm component attempts to spread
across the external networks by generating various IP addresses
and trying to connect to TCP port 445. This can be observed
with Wireshark on REMnux, as shown in Fig. 6. The full list of
WannaCry generated IP addresses obtained during our analysis
is presented in Table VII.

During the SMB probing by WannaCry, one of the unique
features of the generated traffic is that it contains two hard-
coded IP addresses: 192.168.56.20 and 172.16.99.5. They can
be observed by extracting strings from the binary. In partic-
ular, WannaCry sends three NetBIOS session setup packets,
where two of them contain the aforementioned hadrcoded IP
addresses.

During its execution, WannaCry also tries to contact the

Fig. 6. WannaCry external network traffic attempting the SMB exploit.



TABLE VII. EXTERNAL IP ADDRESSES GENERATED BY WANNACRY.

IP address : port
109.140.223.210 : 445
206.242.244.156 : 445
52.213.90.240 : 445
202.76.26.154 : 445
205.215.5.24 : 445
80.133.73.130 : 445
198.73.58.205 : 445
40.188.28.244 : 445
184.55.110.103 : 445

C&C servers by parsing the contents of c.wnry, which specifies
the configuration data, including the following .onion addresses
to connect and the zipped Tor browser installation file:

gx7ekbenv2riucmf.onion

57g7spgrzlojinas.onion

xxlvbrloxvriy2c5.onion

76jdd2ir2embyv47.onion

cwwnhwhlz52maqm7.onion

https : //dist.torporject.org/torbrowser/6.5.1/tor

− win32− 0.2.9.10.zip

During its communication with Tor addresses, WannaCry
establishes a secure HTTPS channel to port 443, and uses
common Tor ports, 9001 and 9050, for network traffic and
directory information.

VI. CONCLUSION AND FUTURE WORK

We have performed static and dynamic analysis of Wan-
naCry ransomware. Both worm and encryption components of
WannaCry have been examined using a wide range of reverse
engineering and malware analysis tools. Our static analysis
has revealed important information regarding the DLLs and
the main Windows functions used by WannaCry, as well as
about additional tools, such as the decryption component. Our
dynamic analysis has revealed important characteristics and
behaviours of WannaCry during its execution. In particular,
we identified Tor addresses used for C&C, observed TCP and
DNS connections, and SMB probes, as well as actions related
to WannaCry persistence and obfuscation.

The findings of this work could be used for designing
effective and efficient mitigation mechanisms for WannaCry
and other ransomware families that exhibit similar behaviour.
This is left as future work. In particular, we plan to investigate
the use of software-defining networking (SDN) [13], [14] for
ransomware detection and mitigation. SDN is an emerging
paradigm of programmable networks, that decouples the con-
trol and data planes. SDN controllers maintain a view of the
entire network and implement policy decisions. On the other
hand, each device at the data plane maintains one or more
flow tables, where the packet handling rules are stored. This
changes the way that networks are designed and managed, and
enables new SDN-based security solutions [15]–[17] such as
firewalls and intrusion detection systems for various types of
malware, including ransomware mitigation [18], [19].
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