
Feature Selection Scheme for Android ICC-related
Features Based on the Gap of the Appearance Ratio

Kyohei Osuge, Hiroya Kato, Shuichiro Haruta, and Iwao Sasase
Dept. of Information and Computer Science, Keio University

3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan,
Email: osuge@sasase.ics.keio.ac.jp

Abstract—Android malwares are rapidly becoming a potential
threat to users. Among several Android malware detection
schemes, the scheme using Inter-Component Communication
(ICC) is gathering attention. That scheme extracts numerous
ICC-related features to detect malwares by machine learning.
In order to mitigate the degradation of detection performance
caused by redundant features, Correlation-based Feature Selec-
tion (CFS) is applied to feature before machine learning. CFS
selects useful features for detection in accordance with the theory
that a good feature subset has little correlation with mutual
features. However, CFS may remove useful ICC-related features
because of strong correlation between them. In this paper, we
propose a feature selection scheme for Android ICC-related
features based on the gap of the appearance ratio. We argue
that the features frequently appearing in either benign apps or
malwares are useful for malware detection, even if they are
strongly correlated with each other. To select useful features
based on our argument, we introduce the proportion of the
appearance ratio of a feature between benign apps and malwares.
Since the proportion can represent whether a feature frequently
appears in either benign apps or malwares, this metric is useful
for feature selection based on our argument. Unfortunately, the
proportion is ineffective when a feature appears only once in all
apps. Thus, we also introduce the difference of the appearance
ratio of a feature between benign apps and malwares. Since the
difference simply represents the gap of the appearance ratio,
we can select useful features by using this metric when such a
situation occurs. By computer simulation with real dataset, we
demonstrate our scheme improves detection accuracy by selecting
the useful features discarded in the previous scheme.

Index Terms—Android malware detection, ICC, feature selec-
tion

I. INTRODUCTION

Smartphones have been widely used in people’s daily life,
such as online banking, automated home control, and enter-
tainment. Due to the mobility and ever expanding capabilities,
the use of smartphones has experienced an exponential growth
rate in recent years. In the first quarter of 2017, Android
accounted for 85.0% of the market share of smartphones [1].
Android is an open source, and there exist many third-party
Android markets (e.g. Baidu, Opera Mobile Store, or Anzhi).
Because of these situations, it has been increasingly targeted
by attacker, and 97% of mobile malwares is developed for
Android [2]. A recent security report shows that on average,
38,000 new mobile malware samples were captured per day
during the third quarter of 2016 [3]. Hence, the detection of
Android malwares is imperative.

In order to deal with this issue, several Android mal-
ware detection schemes have been proposed [4], [5], [6].
They are classified into required resources based approaches
[4], [5] and Inter-Component Communication (ICC) based
approach [6]. Enck et al. [4] propose an approach based
on permissions required by Android apps. They leverage
the fact that malwares tend to register specific combinations
of permissions. However, that scheme is not applicable to
repackaged apps. Since the required permissions of repackaged
apps are similar to the original ones, repackaged apps can
evade that scheme. In order to detect such malwares, Deshotels
et al. [5] propose DroidLegacy which focuses on API calls.
They leverage the fact that malwares abuse sensitive API call
to conduct malicious operations. That scheme captures the
communications between apps and Android system based on
API calls of apps. However, since that scheme is designed
to detect malwares exploiting sensitive API calls, malwares
can bypass that scheme by conspiring with another app to
conduct malicious operations without using API calls. In
order to address such a situation, Xu et al. [6] leverage the
fact that there exists the difference in ICC patterns between
benign apps and malwares. While ICC is mainly utilized for
internal communications within the same apps, malwares tend
to communicate with other apps via ICC to conduct malicious
operations. Thus, that scheme can detect malwares which
invalidate required resources-based shcemes by focusing on
ICC. Although various Android malware detection scheme
have been proposed, we pay attention to [6], because the
malwares abusing ICC to conspire with another app is rapidly
increasing.

In [6], numerous ICC-related features are extracted from
apps to detect malwares by machine learning. In order to
mitigate the degradation of detection performance caused by
irrelevant and redundant features, that scheme applies a well-
known feature selection method, Correlation-based Feature
Selection (CFS) [7] to feature before machine learning. CFS
is based on the theory that a good feature subset constitutes
features highly correlated with the class (benign or malicious)
in machine learning, yet has little correlation with mutual
features in a feature subset. However, CFS may remove useful
features for detection in accordance with the theory. This is
because there exist the features strongly correlated with each
other in the useful ICC-related features. Thus, there is the
possibility that the detection performance is degraded due to

excessive removal of features.
In this paper, we propose a feature selection scheme for

Android ICC-related features based on the gap of the appear-
ance ratio. We argue that the features frequently appearing
in either benign apps or malwares are useful for malware
detection, even if they are strongly correlated with each other.
In order to distinguish useful features from unuseful ones on
the basis of our argument, we introduce the proportion of
the appearance ratio of a feature between benign apps and
malwares. Since the proportion can represent whether a feature
frequently appears in either benign apps or malwares, this
metric is useful for feature selection based on our argument.
Unfortunately, the proportion is ineffective when a feature
appears only once in all apps. Thus, we also introduce the
difference of the appearance ratio of a feature between benign
apps and malwares. Since the difference simply represents the
gap of the appearance ratio, we can select useful features by
using this metric when such a situation occurs. Since these two
metrics are the useful ones reflecting our argument, we can
select the useful features discarded by the previous scheme.
The contributions of this paper are as follows:

1) We propose the feature selection technique which is
suitable for Android ICC-related features. Our scheme
can select useful features on the basis of our argument
that the features frequently appearing in either benign
apps or malwares are useful for malware detection.

2) Our evaluation results show that our scheme achieves
higher detection accuracy than the previous scheme.
Furthermore, after investigating the selected features,
we discover the useful ones removed by the previous
scheme.

The rest of this paper is constructed as follows: we introduce
related works in Section II. We explain the background tech-
niques, the previous scheme and its shortcoming in Section III.
The proposed scheme is described in Section IV. Simulation
results are shown in Section V. We conclude this paper and
mention future works in Section VI.

II. RELATED WORK

There are many Android malware detection schemes, which
are roughly divided into ”Required resources based scheme”
and ”ICC based scheme”. The representative schemes are
explained in the following Sections.

A. Required resources based detection

Enck et al. [4] propose the scheme which detects malwares
by focusing on the permissions required by the Android apps.
That scheme pays attention to the fact that malwares tend to
register specific combinations of permissions. Malwares can
be detected by matching required permissions against pre-
defined security rules. However, that scheme is not applicable
to repackaged apps. Since a repackaged app is created by
injecting malicious components into an original benign app,
the required permissions are similar to the original ones.
Hence, repackaged apps can evade that scheme. In order
to detect repackaged apps, Deshotels et al. [5] propose the

scheme relying on API calls to detect malwares. That scheme
focuses on that malwares abuse sensitive API call to conduct
malicious operations. Repackaged malwares are classified in
accordance with matching Android API calls against the
signatures that identify malwares produced by repackaging.
That scheme captures the communications between apps and
Android system based on API calls of apps. However, since
that scheme is designed to detect malwares exploiting sensitive
API calls, malwares can bypass that scheme by conspiring with
another app to conduct malicious operations without using API
calls. This is why it is necessary to design the schemes which
rely on other features.

B. ICC based detection

Xu et al. [6] propose the scheme which builds malware
detection models based on ICC-related features. That scheme
is the only scheme that defines the ICC-related features and
detects malwares on the basis of them. The main idea of that
scheme is that there exists the difference in ICC patterns be-
tween benign apps and malwares. While ICC is mainly utilized
for internal communications within the same apps, malwares
tend to communicate with other apps via ICC to conduct
malicious operations. That scheme extracts the ICC-related
features that is likely to be abused, and machine learning is
performed to distinguish benign apps from malwares. Because
Android applications communicate with each other through
the ICC mechanism provided by Android, that scheme can
detect the malwares which invalidate most existing required
resources based detection schemes by leveraging the ICC
mechanism instead of required resources. Although various
Android malware detection schemes have been proposed, we
pay attention to [6], because the malwares abusing ICC is
rapidly increasing. We elaborate that scheme in the next
Section.

III. BACKGROUND TECHNIQUES AND PREVIOUS SCHEME

A. Background techniques

In the previous scheme, EPICC [8] is employed for extract-
ing ICC-related features. TABLE I shows the ICC categories
and the patterns used in the previous scheme. Component
is a function defined by the developer and is divided into
four types, Activity, Service, Broadcast Receiver, and Content
Provider. Activity provides all visible actions. Service can

TABLE I: ICC categories obtained in the previous scheme

ICC categories ICC patterns

Component
Activity, Service, Broadcast Receiver(static),
Broadcast Receiver(dynamic), Content Provider

Explicit Intent All Explicit Intent, External Explicit Intent

Implicit Intent
All Implicit Intent, Internal Implicit Intent,
External Implicit Intent(userdefined action),
External Implicit Intent(system action)

Intent Filter

All Intent Filter, Intent Filter(for activity),
Intent Filter(for service),
Intent Filter(for receier static),
Intent Filter(for receiver dynamic)

perform long-running operations in the background. Broadcast
Receiver receives information from multiple apps. Content
Provider manages access to a database. Intent is a mech-
anism that allows apps to interact within the same app or
communicate with other apps by sending it to a certain
app’s Component or Android system. The difference between
Explicit and Implicit Intent is whether the destination app of
the intent is specific or not. Intent Filter is used to match with
Implicit Intent in Android system.

B. Overview of the previous scheme

The main idea of the previous scheme is that there exists the
difference in ICC patterns between benign apps and malwares.
In general, benign apps mainly use ICC for internal communi-
cations within the same app. On the other hand, malwares tend
to interact with other apps via the ICC mechanism in order to
conduct malicious operations. That scheme extracts numerous
ICC-related features from apps to detect malwares by machine
learning. The extracted features are divided into three types.
The first one is the number of each pattern appearing in an
app. The second one is the number of each function appearing
in an app. The third one is the number of each destination app
of External Explicit Intent appearing in an app. Basically, an
ICC pattern indicates a function defined by the developer or
Android system. Exceptionally, one means a package name
of a destination app of External Explicit Intent when Explicit
Intent is sent to another app.

In order to mitigate the degradation of detection per-
formance caused by irrelevant and redundant features, that
scheme applies a well-known feature selection method,
CFS [7] to feature before machine learning. CFS is based on
the theory that a good feature subset contains features highly
correlated with the class (benign or malicious) in machine
learning, yet has little correlation with mutual features in a
feature subset. CFS expresses correlations as a numerical value
and selects a good feature subset in accordance with the theory.
Finally, that scheme makes the feature vectors based on the
selected features for machine learning. The feature vectors are
fed into classifier such as SVM [9] and it detects malwares.

C. Shortcoming of the previous scheme

In CFS’s theory, the features strongly correlated with each
other are removed. Thus, there is the possibility that CFS
removes not only redundant features but also ones which are
useful for distinguishing malwares from benign apps. This is
because there exist the features strongly correlated with each
other in the useful ICC-related features. For instance, the num-
ber of External Explicit Intent and the number of the destina-
tion app named com.android.browser(external explicit intent)
(hereinafter, this is called ”browser Intent”) are both useful for
detection. This is because the malwares that are not permitted
to browse web tend to send browser Intent to external apps
in order to manipulate a browser app. By doing this, the
malwares can supplant the Android’s standard web browser
and obtain personal information. In this case, the number
of External Explicit Intent is necessarily a non-zero value if

browser Intent appears in the app. Therefore, the number of
External Explicit Intent is strongly correlated in terms of the
presence of browser Intent in an app. Accordingly, although
the number of browser Intent is useful feature, CFS removes
it because of strong correlation between above features, and
the detection performance is degraded.

IV. PROPOSED SCHEME

A. Idea

We argue that since the useful features should be used for
malware detection even if they are strongly correlated with
each other, CFS is not appropriate for Android ICC-related
features. Thus, in this paper, we propose a feature selection
scheme for Android ICC-related features based on the gap
of the appearance ratio. Our scheme focuses on the fact that
the features frequently appearing in either benign apps or
malwares are useful for malware detection, even if they are
strongly correlated with each other. Fig. 1 shows useful fea-
tures and unuseful ones for detection in our scheme. As shown
in Fig. 1, we intuitively understand that feature 2 is a useful
feature because it frequently appears only in malicious apps.
Thus, this feature should be utilized for malware detection. On
the other hand, feature 1 is a redundant feature because there
is no difference of the appearance ratio between benign apps
and malwares. There are a very large number of features such
as feature 1 appearing only in a few apps because Android
provides a wide variety of functions. Since such features do
not introduce useful evidence in the malware detection, they
should not be used for training of machine learning. Thus, we
exclude them to improve detection accuracy.

In order to distinguish useful features from unuseful ones
according to our argument that useful features frequently
appear in either benign apps or malwares, we need the
metric that can be used to compare the appearance ratio of a
feature in benign apps with that in malwares. To select useful
features based on our argument, we introduce the proportion
of the appearance ratio of a feature between benign apps and

app name

benign 1

benign 2

benign 3

benign 4

malicious 1

malicious 2

malicious 3

malicious 4

feature 1

1

0

0

0

0

1

0

0

feature 2

1

0

0

0

1

1

1

0

big difference
in the number
of 0 → useful

little difference
in the number

of 0 → unuseful

Fig. 1: Useful features and unuseful ones in our scheme

malwares. Since the proportion can represent whether a feature
frequently appears in either benign apps or malwares, this
metric is useful for feature selection based on our argument.
In order not to divide a numerical value by 0, the proportion
is defined as the minimum value of the appearance ratio of a
feature in benign apps and that in malwares by the maximum
value of them. Therefore, the proportion indicates a value from
0 to 1. Because of this definition, it is assumed that the smaller
the proportion is, the larger the gap of the appearance ratio of a
feature between benign apps and malwares is. Thus, a feature
showing a small proportion is useful for detecting malwares.
However, the proportion does not function as the proper metric
when the value of it is 0. For instance, we consider the case
where the feature fA appears only once in all apps. In this
case, fA seems to be unuseful since it is probably a function
defined by the developer. However, fA is regarded as a useful
feature by the proportion in spite of unusefulness of it. In order
to address such a situation, we also introduce the difference
of the appearance ratio of a feature between benign apps and
malwares. We define the difference as the absolute value of
subtraction of the appearance ratio in benign apps and that in
malwares. Since the difference simply represents the gap of
the appearance ratio, we can select useful features by using
this when the proportion equals 0. These new metrics can be
the useful ones reflecting our argument.

The proportion of the appearance ratio of a feature between
benign apps and malwares and the difference of that is
necessary to be markedly represented in order to select useful
features reliably. Therefore, decision content is utilized to
realize that. Let P (f) denote a probability that a feature f
does not appear in the training dataset, then decision content
E(f) is given as follows:

E(f) = −log2P (f). (1)

As shown in Fig. 2, the value of E(f) increases acceleratively
as the value of P (f) decreases. We calculate the benign app’s
decision content E(f)benign and the malicious app’s decision
content E(f)malicious, respectively and compare E(f)benign
with E(f)malicious to select useful features. The algorithm
of comparison is explained in the next Section. Finally, we
utilize only the features selected by our scheme for training
of machine learning.

B. Algorithm

Fig. 3 shows the flowchart of our scheme. First, we calculate
E(f)benign and E(f)malicious of a feature f . Here, we define
the value set of benign training dataset and that of malicious
one in f as Bf and Mf , respectively. Note that P (f) in Eq. (1)
indicates a probability that f does not appear in the training
dataset in our scheme. Let B0

f ⊆ Bf and M 0
f ⊆ Mf denote the

zero-value set in Bf and that in Mf , respectively. E(f)benign
and E(f)malicious are calculated as follows:

E(f)benign = −log2
n(B0

f)

n(Bf)
, (2)

0

1.0

2.0

3.0

4.0

0 0.25 0.50 0.75 1.0
P (f)

E(f)

high ←− appearance ratio −→ low

E(f) = −log2P (f)

Fig. 2: Probability P (f) versus decision content E(f)

Input a feature f

Calculate E(f)benign and E(f)malicious

E(f)proportion is
not 0?

E(f)proportion is
smaller than
Tproportion?

E(f)difference is
larger than
Tdifference?

Useful feature Unuseful feature

Yes No

Yes NoYes No

Fig. 3: Flowchart of our scheme

E(f)malicious = −log2
n(M 0

f)

n(Mf)
, (3)

where n(set) means the number of elements in set.
As mentioned in Section IV-A, our scheme introduces not

only the proportion of the appearance ratio of a feature
between benign apps and malwares but also the difference of

that. The proportion E(f)proportion is determined as follows:

E(f)proportion =
min(E(f)benign, E(f)malicious)

max(E(f)benign, E(f)malicious)
. (4)

A feature f showing small E(f)proportion is a useful feature
for detecting malwares. In our scheme, a feature f that indi-
cates a smaller E(f)proportion than the threshold Tproportion

is leveraged for machine learning.
E(f)difference is defined as follows:

E(f)difference = |E(f)benign − E(f)malicious|. (5)

A feature f indicating large E(f)difference is a useful feature
for distinguishing benign apps from malwares. Therefore, we
utilize a feature f that shows a larger E(f)difference than
the threshold Tdifference for detection when E(f)proportion
equals 0. In our scheme, Tproportion and Tdifference are
determined by some experiments in Section V-B.

We perform above procedure for all features. Utilizing
both E(f)proportion and E(f)difference, we realize feature
selection technique which is suitable for detecting malwares
using ICC.

V. EVALUATION

In order to show the effectiveness of our scheme, we eval-
uate Accuracy, True Positive Rate (TPR), and False Positive
Rate (FPR) calculated as:

Accuracy =
TP + TN

TP+ TN+ FP + FN
, (6)

TPR =
TP

TP + FN
, (7)

FPR =
FP

FP + TN
, (8)

where TP, TN, FP, and FN denote the number of True Positive
(malwares are regarded as malwares), True Negative (benign
apps are regarded as benign ones), False Positive (benign apps
are regarded as malwares), and False Negative (malwares are
regarded as benign apps), respectively.

A. Simulation parameters

TABLE II shows our simulation parameters. As the benign
android apps dataset, we use Androzoo dataset [10]. Androzoo
collects more than five million apps from several sources, in-
cluding the official Google play app market. Each of them has
been analysed by VirulTotal [13], which is an antivirus service
with over 60 antivirus scanners. We extract the 1,339 apps for

TABLE II: Simulation parameter

Name Data
Benign apps Androzoo [10]

Malicious apps Drebin [11]
The number of benign apps 1,339

The number of malicous apps 1,448
Classifier SVM [9]
Validation ten-fold cross validation [12]

Simulation tool Python

which no antivirus scanners raise any alarm from Androzoo.
As the malwares dataset, we use Drebin dataset [11]. This
malware set is one of the largest datasets of Android malwares
being publicly available today. We randomly pick the 1,448
malwares from Drebin dataset.

We compare the detection performance of our scheme with
that of the previous scheme [6]. The previous scheme lever-
ages a widely used two-class classification method, Support
Vector Machine (SVM) [9]. SVM is suitable for processing
multidimensional data like the feature vectors and capable of
producing a model efficiently. In order to conduct fair compar-
ison between our scheme and the previous scheme, our scheme
also utilizes SVM. We conduct a series of experiments using
ten-fold cross validation [12] to measure the performance of
our scheme and the previous scheme. This can confirm the
validity of the analysis.

B. Decision of the threshold

In order to decide optimal thresholds, we record the de-
tection accuracy while changing Tproportion and Tdifference.
The range of Tproportion is from 0.01 to 0.50 at 0.01 intervals,
and that of Tdifference is from 0.0001 to 0.0070 at 0.0001
intervals. According to the range of the thresholds, we perform
machine learning 50 × 70 times. Fig. 4 shows the inspection
result of Tproportion and Tdifference. As we can see from this
figure, a high accuracy is obtained over a wide range. Finally,
we determine Tproportion and Tdifference as 0.22 and 0.0010
that show the best accuracy in the experiment.

C. Detection performance

TABLE III shows detection performance of our scheme
and the previous scheme [6]. As we can see from this table,
the accuracy of the previous scheme is up to 89.9%, while

0.2
0.4 2

4

6

·10�3

0.8

0.9

Tproportion

Tdifference

A
cc
u
ra
cy

1

Fig. 4: Inspection result of Tproportion and Tdifference

TABLE III: Detection performance

Scheme TPR (%) FPR (%) Accuracy (%)
Our scheme 91.1 3.3 93.8
ICCDetector 85.9 5.8 89.9

our scheme achieves the accuracy of 93.8%, roughly 4%
higher than the previous scheme, with a higher TPR and a
lower FPR. This is because our scheme can select the useful
features discarded by the previous scheme. For instance,
android.provider.Telephony.SIM FULL(for receiver static)
(hereinafter, this is called ”telephony Intent Filter”) is utilized
for machine learning only in our scheme. Malwares tend to
register Intent Filter(for receiver static) to monitor system
events such as SMS-related information and downloading
states. In particular, some malwares manipulate telephony
Intent Filter in order to observe SMS messages. This is why
there is a danger that such malwares steal SMS messages
and upload them to remote server. Hence, telephony Intent
Filter should be used as a feature for malware detection.
However, the previous scheme discards telephony Intent
Filter due to strong correlation between it and the number
of Intent Filter(for receiver static). On the other hand, our
scheme can select it as a useful feature by considering the
gap of the appearance ratio of a feature between benign
apps and malwares. As a result, our scheme can improve the
detection accuracy.

D. False Negative analysis

Our scheme misses 129 malwares, and ICCDetector regards
203 malwares as benign apps. This is because there exist
the Android malwares barely using ICC mechanism. Fig. 5
shows an example of an EPICC output from such malwares.
Both schemes can extract few ICC-related features from these
malwares. In general, malwares tend to register more ICC than
benign apps in order to conduct malicious operations via the
ICC mechanism. However, since these malwares utilize few
ICC-related features, the schemes based on ICC judge such
malwares as benign apps. Instead of ICC, these malwares
simply abuse required resources such as permissions and
sensitive API calls. Thus, a hybrid scheme can address this
shortcoming.

VI. CONCLUSION

We have proposed a feature selection scheme for Android
ICC-related features based on the gap of the appearance

Fig. 5: Example of an Android malware barely using ICC

ratio. We focus on the fact that the features which frequently
appearing in either benign apps and malwares are useful for
malware detection, even if they are strongly correlated with
each other. By comparing the appearance ratio of a feature
in benign apps with that in malwares, we can utilize the
useful features discarded by the previous scheme. By the
computer simulation using real dataset, we show our scheme
achieves the accuracy of 93.8%, roughly 4% higher than the
previous scheme. As future works, we will reconsider the
decision of the thresholds. In the current state, although it
is necessary to decide E(f)proportion and E(f)difference by
performing some experiments, we consider that the automatic
determination method of the optimal thresholds is needed to
reduce calculation cost. Furthermore, we plan more detailed
evaluation about the validity for using decision content.

ACKNOWLEDGMENT

This work is partly supported by the Grant in Aid for 　
Scientific Research (No.17K06440) from Japan Society for
Promotion of Science (JSPS).

REFERENCES

[1] IDC. Smartphone OS Market Share. [Online]. Available:
https://www.idc.com/promo/smartphone-market-share/os

[2] G. Kelly. Report: 97% Of Mobile Malware Is On Android. [Online].
Available: http://goo.gl/MYDBKC

[3] Qihoo. Report of Smartphone Security in China. [Online]. Available:
https://goo.gl/V9Vh1u

[4] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” Proceedings of the 16th ACM conference on
Computer and communications security - CCS ’09, pp. 235–245, 2009.

[5] L. Deshotels, V. Notani, and A. Lakhotia, “DroidLegacy: Automated
Familial Classification of Android Malware,” Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop
2014, pp. 1–12, 2014.

[6] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-Based Malware
Detection on Android,” IEEE Transactions on Information Forensics
and Security, vol. 11, no. 6, pp. 1252–1264, 2016.

[7] M. Hall, “Correlation-based Feature Selection for Machine Learning,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Hamilton, New
Zealand, 1999.

[8] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.
Traon, “Effective Inter-Component Communication Mapping in Android
with Epicc: An Essential Step Towards Holistic Security Analysis,”
USENIX Security Symposium, pp. 543–558, 2013.

[9] C. J. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121–167, 1998.

[10] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein,
and Y. L. Traon, “AndroZoo++: Collecting Millions of Android Apps
and Their Metadata for the Research Community,” pp. 468–471, 2017.

[11] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“Drebin: Effective and Explainable Detection of Android Malware
in Your Pocket,” Proceedings 2014 Network and Distributed System
Security Symposium, pp. 1–15, Feburuary, 2014.

[12] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection,” Proc. of IJCAI’95, pp. 1137–1145,
1995.

[13] VirusTotal. [Online]. Available: https://www.virustotal.com/

