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Abstract 
 In this paper, typical mathematical derivation processes of the boundary conditions 
presented in most undergraduate electromagnetic textbooks for time varying fields of D and B in 
Faraday’s law and Ampere’s law on a perfect conductor are physically reviewed. We notice that the 
derivation processes do not give physical meanings to learners. Therefore, this paper suggests that 
different derivation processes providing some physical insights or explanations are required. 
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1. Introduction 
 Various technological advances in the fields of RF/Microwave communication, radar, high 
speed electronics/computing, optics, robots, biomedicine, household appliances, and EMI/C 
(electromagnetic interference/compatibility) have continuously increased the necessity for a deep 
understanding of basic physical concepts in the field of electromagnetics (EM) [1],[2]. However, 
the introductory EM course is considered one of the most difficult courses to many electrical 
engineering undergraduates, because the subject is usually taught with intense mathematical 
manipulation and its treatment is often abstract [3],[4]. On the other hand, when most electrical 
engineers practice after graduation, they have very little use of intricate mathematics. Most of our 
practical problems are solved with a little more than algebra and by field simulators. To use 
simulation tools for some practical problems, physical principles of the EM boundary conditions are 
strongly recommended rather than simply applying the conditions mechanically. However, for 
analysis, derivation, and research of new and theoretical EM problems, mathematical abilities are 
also required. To satisfy the two aspects electromagnetics faces, we have to provide both of 
mathematical and physical backgrounds to students. However, students who do not like intense 
mathematical treatment from the outset of the subject easily drop out of the course. Because high 
quality comes from numbers, we should retain as many students as possible in the introductory EM 
course. To achieve this goal, some strong motivation should be given to students who “hate 
electromagnetics.” [5]. 

When a difficult subject like electromagnetics is taught, if too much mathematics is 
introduced from the beginning, many students cannot grasp the physical meaning related to the 
subject and become haters of the subject. Usually, complete concepts are developed from qualitative 
Gestalts to quantitative examples and electromagnetic laws. Thus, when electromagnetics is first 
introduced, a good teaching method may be to present a mathematical derivation or treatment of a 
subject after the introduction of a physical concept of the subject. In this case, even though a student 
has some difficulty following a mathematical treatment of the EM subject, if he/she is interested in 
the physical concept, then, more effort can be devoted to understand the mathematical treatment of 
the subject. Then, the student can be an active and heuristic learner. 
 Maxwell’s equations form the basic foundation of electromagnetics. The equations in 
differential form govern the interrelationships between the spatial field vectors and the associated 
source densities at points in a given medium. In practice we encounter EM problems with two or 
more different media. Although a complete and unique solution of an EM problem should include 
information about both the differential form of Maxwell’s equations and boundary conditions, many 
introductory EM textbooks provide a good physical explanation only for the equations without the 



boundary conditions. Before the conditions are mathematically applied, if we have a physical 
concept providing insight on how an EM phenomenon occurs between boundaries, the problem can 
be easily solved while invoking interest. 
 When undergraduate textbooks introduce the boundary conditions, the conditions are 
usually mathematically derived from Maxwell’s equations in integral forms. Some physical 
background and meaning on why the two time varying field terms in Faraday’s and Ampere’s Laws 
become zero in the derivation of the conditions are not physically explained even in the chapters 
that explain time varying fields. Especially, the physical reason why the two time varying field 
terms on the conductor surface between a dielectric and a perfect conductor become “zero” is not 
explained. Usually, many text books present that the fields become zero only in mathematical terms 
without any physical explanation. They provide the conditions based on the assumption that adopts 
the limitation ∆S ՜ 0 in the derivation. Some textbooks present the boundary conditions for the 
static cases without explanation even in the chapters dealing with time varying fields. 
 In Section 2, the typical mathematical derivation processes for the boundary conditions - 
the tangential components E and H on a perfect conductor surface - presented in most 
undergraduate EM textbooks are introduced. In Section 3, we try to raise awareness of the problem 
in which the derivation has been carried out in purely mathematical ways to explain why the time 
varying terms vanish without physical meanings or explanations and to look for problems in the 
derivation process and physical meanings or concept to explain why the time varying field 
components become zero on a perfect conductor surface. 
 

2. Typical Textbook Presentation for the Boundary Conditions 
In this section, the typical derivation processes of the boundary conditions presented in 

most undergraduate EM textbooks are introduced to show how the two time varying field terms in 
the two Maxwell’s curl equations are treated for the tangential components on a perfect conductor 
boundary. The normal components of the boundary conditions will not be covered in this paper. 

Fig. 1 shows the typical geometry used for the derivation of the boundary conditions 
between two different media. The typical derivation process of the boundary conditions considers 
one integral equation at a time and applies it to a closed path for the tangential components and a 
closed surface encompassing the boundary for the time varying field terms, as shown in Fig. 1 for a 
plane boundary. For the time varying term to vanish, most undergraduate textbooks adopt the limit 
that the area enclosed by the closed path goes to zero and conclude that the time varying terms 
disappear. 

In the derivation of the boundary condition of the tangential E fields, the time varying term 
ப࡮

ப௧
 in Faraday’s law is considered as in (1). Referring to Fig. 1, we apply the integral form of 

Faraday’s law to the path in the limit where ad = bc = h goes to 0 by making the area abcd = S 
converge to zero, but with ab = cd =ℓ remaining on either side of the boundary. Therefore, 
tangential components of an electric field will be continuous between two different dielectric media. 
And, if either medium of the two dielectric media is a perfect conductor, then, an Et will be zero on 
the perfect conductor without physical explanation. In this derivation the time derivative of the B 
field disappears under the condition of the integration area vanishing. 

For the second step, we consider the time varying term 
பࡰ

ப௧
  in Ampere’s law. Typical 

undergraduate textbooks present a similar derivation process as the tangential electric field case 
mentioned above. They describe that Ht is continuous between two different dielectrics without 
physical explanation especially if one medium is a perfect conductor, where the Ht induces surface 
current on the perfect conductor like (2). 

0 0
0 0

ad ad
abcda Areabc bc

abcd

t 
 


  

 
B

lim E d lim dS

   2 1     t tE E

t


       


B

S 0 
 

1 2  t tE E   1 2( ) 0  n E E   (1) 

And 

0 0 0
0 0 0

ad ad ad
abcda Area Areabc bc bc

abcd abcd

t  
  


    

  
D

lim H d lim J dS lim dS

  2 1  H  t tH      J S  1 2 S=J   t tH H  1 2( ) S  n H H J    (2) 



where the subscripts 1 and 2 represent media 1 and 2 and n is the unit normal vector to the surface directed 
into medium 1. JS is the surface charge density (A/m). 
 

 
Fig. 1  A typical geometry used in the derivation of the boundary conditions for the tangential 
components based on Faraday’s law and Ampere’s circuital law. 
 

3. Problems in the Typical Derivation Processes and Physical Concepts 
for the Time Varying Fields on a Perfect Conductor Boundary 
 The typical derivation processes of the boundary conditions on a perfect conductor adopted 
in most undergraduate textbooks was presented in Section 2. The books do not include any 
explanations on why the tangential component of E vanishes and the tangential component of H 
induces the surface current on a perfect conductor without considering physical natures of the 
vanishing two time varying terms on a perfect conductor surface. 
 The books conclude that the time varying fields cannot be exist by assuming that the area 
∆࢙  0 in the limit as ∆݄  0. And, since they use the shaded area in Fig. 1 for the surface 
integral of the time varying field B, the B should be considered as a tangential component with 
respect to the boundary as shown in Fig. 2 where the accompanying E fields are circulating fields 
around B. Thus, the E fields crossing the boundary at point B should be considered as normal 
components. In this context, even though the typical derivation in most textbooks uses Faraday’s 
law mathematically, the derivation does not follow physical nature. To satisfy Faraday’s law 
physically, the time varying field B should be a normal component to the plane boundary in 
deriving the boundary conditions. If a normal component of a time varying field B is assumed for 
the derivation of the boundary condition on a perfect conductor, the circulating current, like the 
infinite eddy current by a non zero electromotive force, is induced on the surface by the Faraday’s 
law. Since the eddy current generates a magnetic field following Lenz’s law, the inducing field is 
cancelled completely on the perfect conductor surface. As a result, the eddy current is a cause for 
the vanishing time varying B field on the conductor. The result follows the typical boundary 
condition for the normal component of B. This type of physical insight should be included in the 
derivation process of the boundary condition. 

Next, we consider the typical derivation process of the boundary condition used for the 
tangential H field component on a perfect conductor, and consider the area ∆࢙ and the closed 
contour abcda for the surface and line integrals, respectively. The time varying D field in Ampere’s 

 
 
Fig. 2  Conceptual picture showing a circulating E field around time varying B field. 
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law is also considered as a tangential component to the boundary in the typical derivation. This is 
the same situation as in the previous explanation on the boundary condition for the tangential E 
field. The time varying D fields induce circulating H fields around the D. The circulating H fields 
will have normal components at the point B in Fig. 2 when the fields cross the boundary. Therefore, 
as in the previous case, we have to consider the normal component of time varying D with respect 
to the plane boundary if we want to derive the boundary condition for tangential H components. 
Since the normal component of the time varying D is a displacement current as shown in Fig. 3, 
circulating H around D is induced on the perfect conductors of the capacitor if we assume that the 
plates, at point c, of the capacitor is a perfect conductor. The H is circulating on the boundary 
surface which is a tangential component on the boundary. The line integral of H generates 
magnetomotive force (mmf) and current flows as shown in Fig. 3. On a perfect conductor, the time 
varying D induces a time varying charge which is a surface charge due to polarization changes. The 

time varying charge 
ப
ப୲

 becomes a conduction current J=E along the conductor line. 

 
Fig. 3 A part of an AC circuit with a capacitor showing conduction current (black arrows) and time 
varying D (displacement current : empty arrows) in a dielectric of capacitor [6]. 
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