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Abstract 

The millimeter and submillimeter frequency ranges are becoming very important to today’s 
electronics, security and communication industries.  NIST has undertaken a research program to 
aggressively pursue this area.  This paper discusses the millimeter/submillimeter activities in the 
Electromagnetics Division at NIST.  We discuss the current status and the future directions of the 
programs. 

1.0  Introduction 

The millimeter wave band is defined as having a frequency range of 30 GHz to 300 GHz (wavelength 
of 10 mm to 1 mm) and the submillimeter wave/terahertz band a range of 300 GHz to 10 THz 
(wavelength of 1 mm to 30 µm).  Currently there is much activity in these frequency ranges.  Radio 
astronomy has used frequencies of 100 GHz and higher for many years, but has grown up somewhat 
isolated from the rest of the electronics industry. Frequencies below 1 THz are used currently for 
remote sensing measurements of the atmosphere and sea, largely because they offer good resolution, 
with better penetration through cloud cover than infrared detectors.  These frequencies are less suited 
to communication applications because of high atmospheric absorption, but huge bandwidths are 
available with little competition and there is interest in using these frequencies for short range and 
highly-secure links.  Frequencies of 100 GHz and higher are  attractive for radar because it offers very 
good range resolution and because relatively small antennas can achieve good angular resolution.  
These systems are also attractive for small airborne radar and automotive radar for collision avoidance 
and adaptive cruise-control applications.  While most of the aforementioned applications are 
becoming more important, the major driver for commercial interest in these frequencies has been the 
security market.  Frequencies above 100 GHz will penetrate through clothing and other materials and 
the short wavelength results in small pixels and good image resolution.  There are many chemicals 
that have resonances in these frequency ranges.  Security applications at 100 GHz and higher are 
poised to increase rapidly. 

Metrological support needs to be created to support these emerging areas.  NIST’s Electromagnetics 
Division is actively pursuing research related to the measurement of various quantities at these 
frequencies.  The main areas of involvement are:  antenna metrology, advanced communications, 
electromagnetic property of materials, noise parameters/brightness temperature standards, and 
scattering-parameter and power measurements. 

2.0  Antenna Metrology 

NIST’s Antenna Metrology Program has for three decades served companies and government 
agencies seeking to maximize the efficiency of communications in terms of evaluation of the world’s 
highest-performance antennas. Program physicists and engineers are leaders in testing key antenna 
performance characteristics used in some of the worlds’ most sensitive applications, such as radar 
systems, aircraft communication and avionics, and satellites and spacecraft, which are vital for 
communications, weather prediction, and space science [1].  
 
The Electromagnetics Division of NIST pioneered the near-field scanning technique, now the 
standard method for testing high-performance antennas designed to communicate across tens, 
thousands or even millions of kilometers, and continue to advance it both theoretically and 
experimentally. This technique measures an antenna’s near-field at close distances (a few 

                                                            
1 U.S. government work; not protected by U.S. copyright. 
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require measurements of unprecedented accuracy. New imaging systems will require support in many 
different microwave parameter areas. 
 

We are evaluating vector network analyzer (VNA) capabilities, and calibration and measurement 
methodologies when used at these high frequencies [6].  A detailed analysis of our multiline TRL 
calibrations at submillimeter wave frequencies led us to conclude that their measurement error is 
limited by systematic bias introduced primarily by misalignment of the flanges and calibration shims 
(E-plane and H-plane displacements), and that this error cannot be reduced by averaging. We then 
showed that TSM (Thru-Short-Match) calibrations based on precision loads and TS(RO) (Thru-Short-
Radiating Open) calibrations based on radiating open-ended test ports reduce transverse 
displacements significantly, and provide attractive alternatives with greater accuracy. 

 
We verified the accuracy of the TSM and TS(RO) calibrations by developing a full uncertainty 
analysis that captures all of the errors for rectangular waveguide interfaces [6]. We showed not only 
that the uncertainty analysis provides reasonable estimates of the accuracy of these calibrations, but 
that it provides a systematic way of setting weights in optimal TSM(RO) calibrations based on both 
load and radiating open standards. 

 
We have developed different tools to try to minimize connector-based errors such as the rail system 
shown in Figure 7.  This system greatly reduces the stress on the flanges and improves repeatability. 

TIME / 31 March 2008 / 31  

Figure 7. The rail system constrains the movement of the extension heads and cables. 

The systematic error caused by the shim/flange and flange/flange displacement is shown in Figure 8.  
Here we see that the error is zero only when the two apertures are perfectly aligned, otherwise there is 
a positive error that is much greater for the shim/flange displacement than it is for the flange/flange 
displacement.  This indicates that the standard LRL (Line-Reflect-Line) calibration approach, which 
is reliant on shims, is much less effective than the other approaches tried.  We have done this work 
primarily in the WR-1.5 band (500-750 GHz) and will extend it to WR-1 (750 GHz – 1.1 THz) when 
we obtain WR-1 extension heads for our VNA. 
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Figure 8. Normalized admittance created by lateral displacement of two waveguide interfaces 
in a WM-380 (WR 1.5) calibration. The figure shows that the effect of the shim-to-flange 
displacements is approximately ten times larger than the effects of flange-to-flange displacements. 

 
We also investigated the effect of better precision test ports. Figure 9 illustrates the improvement 
obtained in the measurement of the reflection coefficients of a long section of rectangular waveguide 
when we used a TS(RO) calibration and our precision test ports, compared to a TSM calibration with 
standard test ports. The occasional “spikes” in the curves corrected by the TS(RO) calibration shown 
in Figure 9 are consistent with the sharp variations in the reflection coefficient of radiating opens due 
to reflections off the alignment pins. 
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Figure 9. Comparison of measurements of a long rectangular-waveguide section calibrated by 
TSM with standard test ports and TS(RO) with precision test ports. 

The development of power capabilities above 110 GHz is very difficult to do correctly.  While we can 
simply scale the approach that we have used at lower frequencies involving calorimeters and primary 
transfer standards, this probably is not the best way to proceed above 110 GHz.  Primarily, we need to 
decide the best method to be used to establish power traceability to the SI in the range of 110 GHz to 
the low terahertz region.  We are investigating several possibilities.  These possibilities are looking at 
establishing traceability through mechanisms that are much different than the current established ones.  
We are just in the beginning phase of the search and evaluation of potential technologies, and have 
not identified any one technology that meets our requirements.  

 



7.0  Conclusion 

Applications in many different branches of science require metrological solutions in the millimeter 
and submillimeter wave frequency ranges.  There are many opportunities for metrology at frequencies 
above 110 GHz and up to the low terahertz area.  NIST is actively pursuing research in many areas to 
meet these needs.  The status and future of NIST’s Electromagnetics Division’s antenna, millimeter 
wave for wireless communications, electromagnetic properties of materials, noise/brightness 
temperature/remote sensing, and s-parameter/power programs have been discussed.   
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