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Abstract 
 We propose a three-dimensional (3D) polarized MIMO channel model, which takes into 

account 3D power angular spectrum and comprehensive propagation characteristics of 

electromagnetic waves excited by polarized antennas. Based on the model, we derive a close form 

expression of the spatial correlation as a function of the physical parameters representing both 

characteristics of arbitrary antennas and propagation environment in 3D space. The spatial 

correlation expression allows to use the Von Mises Fisher (VMF) distribution, resulting in a more 

accurate and general channel model. Through simulation, we evaluate and compare performance, in 

terms of the spatial correlation and capacity, of 2 × 2 MIMO antenna configurations with different 

polarizations, i.e. V/V, V/H, and slanted ±450  polarizations. The effect of the parameters is 

analyzed, and verified in certain cases through the literature. 
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1. Introduction 
 

 MIMO systems are considered a potential solution to the demand for high data rates. The 

major issue of MIMO systems is that capacity gain is highly dependent on the spatial correlation, 

which is a function of the antenna array and channel characteristics [1]. It has been shown that, in 

order to achieve reasonably low correlation, antenna spacing has to be at least half a wavelength, 

resulting in increasing equipment size. The use of cross-polarized antenna has an advantage to 

reduce the spacing required on terminal. Thus, this approach is receiving considerable attention in 

the design of MIMO antennas. Implementation and evaluation of MIMO systems need a 

comprehensive understanding of MIMO channels. Despite a number of channel models for 

polarized antennas, the limitation of these works is that the propagating waves are assumed to arrive 

only from the azimuth plane therefore not include the elevation spectrum, thus not fully considering 

the characteristics of antenna and environmental factors.  

In this paper, we propose a 3D polarized geometry model that can accurately represent important 

aspects of polarized MIMO channels in 3D space. We derive the close-form expression of the 

spatial correlation as a function of the physical parameters representing both characteristics of 

arbitrary antennas and propagation environment in 3D space. The close-form expression allows to 

integrate the Von Mises Fisher (VMF) distribution, which has been proved to be appropriate for 

modeling spherical data [2] to the model, resulting in a more accurate and general channel model. 

Using this model, we investigate the effect of elevation angle and antenna orientation, on 

performance of a 2 × 2 MIMO systems with different polarizations of antennas. 

 

2. Channel Modeling 
 

 Consider a MIMO system with 𝑆 transmit antennas (𝑇𝑥1,...,𝑇𝑥𝑆  ) and 𝑈 receive antennas 

(𝑅𝑥1,...,𝑅𝑥𝑈  ) under a 3D geometry model, as shown in Fig. 1. The model is a two-sphere 3D 

geometrical model, which can be considered as an extension of the two-ring model [3]. It is 

assumed that energy contribution of remote scatterers is negligible, only local scatterers at both ends 

of radio link are considered. The transmitter is fixed and the receiver is in motion with the velocity 

vector  v. There are 𝐾 and 𝐿 scatterers at the transmitter and receiver, respectively. The 𝐾 scatterers 

are assumed to lie on a spherical surface of radius 𝑅𝑇  and the kth transmit scatterer, denoted as 𝑇𝑆𝑘  



(𝑘 = 1, 2, … , 𝐾 ), is specified by the solid angle Ω𝑘
𝑇𝑥(𝜑𝑘 , 𝜗𝑘)  which follows a given angular 

distribution. Similarly, the 𝐿 scatterers are assumed to lie on a spherical surface of radius 𝑅𝑅 and the 

lth receive scatterer, denoted as 𝑅𝑆𝑙  (𝑙 = 1, 2, … , 𝐿), is specified by the solid angle Ω𝑙
𝑅𝑥 (𝜙𝑙 , 𝜃𝑙) 

which follows a given angular distribution. The symbols 𝜑𝑘  and 𝜗𝑘  denote the azimuth angle of 

departure (AAoD) and elevation angle of departure (EAoD), respectively. Similarly, the symbols 𝜙𝑙  

and 𝜃𝑙  denote the azimuth angle of arrival (AAoA) and elevation angle of arrival (EAoA), 

respectively. The distance between the centers of the transmitter and receiver is 𝐷. For the local 

scattering assumption, the radii 𝑅𝑇  and 𝑅𝑅   are much smaller than the distance 𝐷 (𝑅𝑇, 𝑅𝑅 ≪ 𝐷). 

The antenna configuration at both transmitter and receiver is assumed to be uniform linear array 

(ULA). The spacing between antenna elements at the transmitter and receiver is denoted by 𝑑𝑇  and 

𝑑𝑅 , respectively. The orientation of antenna array at the transmitter (Tx) and receiver (Rx) are 

specified by the angles 𝜑𝑇𝑥  , 𝜗𝑇𝑥  , 𝜙𝑅𝑥  and 𝜃𝑅𝑥 .  

 
 

Figure 1: Illustration of 3D channel model. 

 

It is assumed that the system is under non-line-of-sight (NLOS) and flat fading environment, the 

(𝑢, 𝑠)component (𝑢 = 1, 2, … , 𝑈; 𝑠 = 1, 2, … , 𝑆) of channel matrix  𝐇(𝑡), can be written as  

 

where 𝑃𝑢𝑠  is the power transfered through the subchannel 𝑇𝑥𝑠 − 𝑅𝑥𝑢 ; 𝑔𝑙,𝑘  and Φ𝑙 ,𝑘
(𝑥 ,𝑦)

 are the gain 

and phase shift between V (H) component of the transmit antenna and V (H) component of the 

receive antenna, respectively, caused by the interaction of the local scatterers 𝑇𝑆𝑘  and 𝑅𝑆𝑙; 𝐷𝑠𝑘  is 

the distance from the scatterer 𝑇𝑆𝑘  to the sth transmit antenna 𝑇𝑥𝑠 ; 𝐷𝑙𝑢  is the distance from the 

scatterer 𝑅𝑆𝑙  to the uth receive antenna 𝑅𝑥𝑢 ;  𝐷𝑙𝑘   is the distance from the scatterer 𝑇𝑆𝑘  to the 

scatterer 𝑅𝑆𝑙 ; 𝐹𝑠
𝑇𝑥 𝑣 

(Ω𝑘
𝑇𝑥)  and 𝐹𝑠

𝑇𝑥  
(Ω𝑘

𝑇𝑥)  are the complex field patterns of the sth transmit 

antenna 𝑇𝑥𝑠 for V polarization and H polarization respectively; 𝐹𝑢
𝑅𝑥 𝑣 

(Ω𝑙
𝑅𝑥) and 𝐹𝑢

𝑅𝑥  
(Ω𝑙

𝑅𝑥)  the 

complex field pattern of the uth receive antenna 𝑅𝑥𝑢  for V polarization and H polarization 

respecively; 𝜅𝑘 ,𝑙
𝑣 and 𝜅𝑘 ,𝑙

  are the inverse XPD for VV/HV and HH/VH transmission, respectively; 

𝜒𝑙 ,𝑘  is the inverse of the co-polar ratio (CPR); 𝑘0 is the wavenumber, 𝑘0 = 2𝜋/𝜆 where 𝜆 is the 

wavelength; kl denotes the wave vector pointing in the propagation direction from the scatterer 𝑅𝑆𝑙   

and 𝑗 =  −1.  By the central limit theorem, with the given statistical properties of the channel, as 𝐾 

and 𝐿, the numbers of scatterers at the Tx and Rx, approach infinity, the 𝑢 ,𝑠(𝑡)  approaches a 

circularly symmetric Gaussian random process with mean zero and variance 𝐸   𝑢 ,𝑠(𝑡)   
2
 . 

(1) 



Therefore, the channel becomes a purely Rayleigh-fading process. The channel coefficient 𝑢 ,𝑠(𝑡)  

is unnormalized. If the channel coefficient is normalized as 𝑢 ,𝑠
𝑛𝑜𝑟𝑚  𝑡 =  𝑢 ,𝑠(𝑡)  / 𝐸   𝑢 ,𝑠(𝑡)   

2
 , 

the normalized channel coefficient 𝑢 ,𝑠
𝑛𝑜𝑟𝑚 (𝑡)  has the standard normal distribution, 𝑁 (0, 1). 

Consequently, the channel matrix is properly modeled as matrix H with the normalized channel 

coefficient 𝑢 ,𝑠
𝑛𝑜𝑟𝑚 (𝑡) . If we define vec 𝐇 = (𝐇1

𝑇 , 𝐇2
𝑻, … , 𝐇𝑺

𝑇)𝑇 ,  where 𝐇𝑖(𝑖 = 1, … , 𝑆)  is the 

𝑈 × 1 matrix and [∙]𝑇denotes transposition, we can determine the spatial correlation matrix of the 

vec (H) as follows: 

                           
Since the vec(H) constructed from the model is special complex Gaussian, the second-order 

statistics of the  vec(H) are completely specified by the cov(vec(H)) [4]. The spatial correlation 

between  𝑝 ,𝑚
𝑛𝑜𝑟 𝑚 (𝑡) and 𝑞 ,𝑛

𝑛𝑜𝑟𝑚 (𝑡),  denoted as 𝑟𝑝𝑚 ,𝑞𝑛 (𝑡), is written as 

 
After mathematical transformations (not shown due to the limit of paper), the correlation in (3) is 

eventually  

 
where 

𝑎 = 𝑘0 𝑚 − 𝑛 𝑑𝑇𝑠𝑖𝑛𝜗𝑇𝑥𝑐𝑜𝑠𝜑𝑅𝑥 ;  𝑏 = 𝑘0 𝑚 − 𝑛 𝑑𝑇𝑠𝑖𝑛𝜗𝑇𝑥𝑠𝑖𝑛𝜑𝑅𝑥 ;  𝑐 = 𝑘0 𝑚 − 𝑛 𝑑𝑇𝑐𝑜𝑠𝜗𝑇𝑥 ; 
𝑑 = 𝑘0 𝑝 − 𝑞 𝑑𝑅𝑠𝑖𝑛𝜃𝑇𝑥𝑐𝑜𝑠𝜙𝑅𝑥 ;   𝑓 = 𝑘0 𝑝 − 𝑞 𝑑𝑅𝑠𝑖𝑛𝜃𝑇𝑥𝑠𝑖𝑛𝜙𝑅𝑥 ;  𝑔 = 𝑘0 𝑝 − 𝑞 𝑑𝑅𝑐𝑜𝑠𝜃𝑇𝑥 ; 
𝑌1 = XPD𝑣;  𝑌2 = XPD ; 𝑌3 = CPR. The terms 𝑝𝑇𝑥(𝜑, 𝜗 ) and 𝑝𝑅𝑥 (𝜙, 𝜃 ), the scatterer distributions 

at the transmitter and receiver, are modeled as Von Mises Fisher (VMF) distributions [2]  

𝑝𝑇𝑥(𝑅𝑥) =  𝜈𝑖
𝑇𝑥 𝑅𝑥 

𝑓(Ω𝑇𝑥 𝑅𝑥 |Ω𝑖
𝑇𝑥 𝑅𝑥 

, 𝜁𝑖
𝑇𝑥(𝑅𝑥)

)
𝑁𝑇𝑥 (𝑅𝑥 )

𝑖=1
           

 where 𝑁𝑇𝑥  and 𝑁𝑅𝑥  are the number of clusters at the transmitter and receiver; 𝜈𝑖
𝑇𝑥(𝑅𝑥)

 is defined as 

the prior probability that the ith cluster was generated; Ω𝑖
𝑇𝑥(𝑅𝑥)

and 𝜁𝑖
𝑇𝑥(𝑅𝑥)

 are the mean direction 

and concentration of the ith cluster, respectively. 

It is observed that, the XPD and CPR, when expressed in decibel (dB), have the normal distribution, 

𝑁 (𝜇, 𝜍). Depending on the environment, the mean 𝜇 of XPD varies from 0 to 18 dB, with the 

standard deviation 𝜍 in order of 3-8 dB [5]. The mean of CPR varies between 0 and 6 dB [6]. The 

expectations in (4) are computed by [7] 

 
From the spatial correlation matrix, 𝐑 = cov vec 𝐇  = 𝐑1/2(𝐑1/2)H , whose entries are computed 

by (3), we can generate samples of channel matrix as follows: 

                                                                                                        (6) 

(3) 

(4) 

(2) 

(5) 



where 𝐇𝐰 is matrix with complex Gaussian elements. Because the samples of the channel maintain 

the spatial correlation of H, we can say that its spatial characteristics are the same as those of the 

real channel.   

 

3. Simulation and Discussion 
 

 This section evaluates performance of MIMO transmission in terms of capacity and 

correlation of a 2 × 2 MIMO system with different polarization antenna configurations, as shown in 

Fig. 2. It is assumed that in the system described by (1) the transmitter has no channel-state 

information, and only the receiver knows the actual realizations. This implies that the signals are 

independent and the power is equally divided among the transmit antennas. Under this assumption, 

the capacity of MIMO channel is given by  

                                  
where 𝜌 is  the average signal-to-noise ratio (SNR), I is the identity matrix, and H is the normalized 

channel matrix, which is computed by (6). Dual-polarized configurations suffer from subchannel 

power losses, which need to be accounted for in their capacity calculation. If we use a fixed transmit 

power constraint, we normalize the channel so as to achieve an average of 𝜌0 (𝜌0 is chosen as 10 dB 

in this simulation) on the vertical-to-vertical link. As a result, the SNR  is equal to 𝜌 [6] 

                                                                      
The angular profiles vary depending on the physical layout of the propagation environment. 

Extraction of the VMF parameters requires measurement campaign and data processing. For 

purpose of simulation, we use the result of the VMF parameters for the AoA profile in [2], as shown 

in Fig. 3. It is noticed from Fig. 3 that the main energy of incoming waves comes from the direction 

 𝜙, 𝜃 =  3300 , 900 . 

 
Figure 2:  Configurations of antennas for different 

polarizations. (a) Vertical polarization. (b) V/H 

polarization. (c) Slanted ±450 polarization 

      Figure 3:  Contour plot of AOA  

 
(a) 

 
(b) 

(7) 

(8) 



 
(c) 

Figure 4. Performance comparison between 3D model and 2D model (a) Vertical polarization. (b) 

±450polarization. (c) V/H polarization. 

  
Figure 5. Performance versus antenna orientation: (a) Correlation. (b) Capacity. 

 

We study the effect of elevation angle by evaluating MIMO performance of the configurations 

under the 3D model and under the 2D model that is transformed from the 3D model by setting the 

elevation angles 𝜗 = 𝜃 = 𝜋/2 integrating the integrand in (4) over the azimuth domain only. It is 

observed in Fig. 4 that the 2D channel model gives higher correlation for the configurations with the 

V/V and slanted ±450 polarizations (Fig. 4 (a) and (b)). However, it is interesting to note that the 

2D channel model provides the correlation of zero for the configuration with the V/H polarization 

(Fig. 4 (c)). This is because the 2D model considers antenna pattern in azimuth plane only. The 

vertical components of the dipole with inclination angle of 900 is only equal to zero in the plane 

𝜃 = 𝜋/2 . In this case, omission of the vertical components of the 2D model makes the 

orthogonality of polarization between the two antennas at the transmitter and receiver, yielding zero 

correlation. Therefore, depending on the configurations, the 2D model would underestimate or 

overestimate MIMO performance. On the other hand, the influence of patterns among elements is 

important to the study on the effect of elevation angle. In [8], the assumption of identical dipoles for 

all elements only results in the underestimation of the capacity that is not true in general. 

The effect of antenna orientation on the correlation is shown in Fig. 5. The correlation varies as a 

function of 𝜙𝑅𝑥  and gets minimum when 𝜙𝑅𝑥  is approximately equal to 600 or to 2400 . This is 

because, at these values, the main direction of incoming waves, which is shown in Fig. 3, is 

perpendicular to the receive array. Intuitively, since the distance between the two sub-channels 

𝑇𝑥1 − 𝑅𝑥1 and 𝑇𝑥2 − 𝑅𝑥2 is maximum, the correlation is minimum. It also found in Fig. 5 (a) that 

the correlation of the configuration with the V/H polarization is the lowest among the 

configurations, and that the correlation of the configuration with the slanted ±450 polarization is 

lower than that of the configuration with the V/V polarization. Similar experimental observation can 

be found in [9]. The behavior of the correlation results in that of the average capacity as shown Fig. 

5 (b). It is indeed found that the capacity is the highest at 600 or at 2400 In addition, although the 



correlation of the configuration with the V/V polarization is higher than that of the slanted ±450 

polarization, their capacity is almost the same, varying between 3.9 and 4.1 bps/Hz. This is because 

the configuration employing the slanted ±450 polarization suffers from the power loss as a 

consequence of the amount of depolarization. It is also found that the capacity of the configuration 

with the V/H polarization is almost constant at 5 bps/Hz, or 20% higher than that of the 

configurations with the V/V and slanted ±450 polarizations. Thus, the V/H polarization is effective 

from the viewpoint of the correlation to enhance the capacity in MIMO channels. 

 

5. Conclusion 
 

 

 This paper proposes a 3D polarized channel model for MIMO systems. In this model, the 

scatterers are distributed over the sphere centered on the antenna array. The probability distribution 

of scatterers is based on the VMF distribution that is suitable for directions in space. In particular, 

derivation of a close form expression for the spatial correlation matrix which completely 

characterizes the spatial properties of the channel has been presented. Comparison in terms of the 

correlation between the 2D and 3D channel models has been made to show the inaccurate 

estimation of the 2D model in the scenarios. The proposed model can be used to evaluate the effect 

of arbitrary parameters on   performance of MIMO systems in terms of both correlation and 

capacity. The proposed model is presented here for linear array, but can be extended to any kind of 

array type. 
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