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Abstract—This paper discusses acquisition of cooperative 

behaviour among heterogeneous agents and proposes two 

methods to promote cooperative behaviour: phased learning and 

selective recognition. For complicated scenarios such as multi-

agent tasks, we propose phased learning, in which agents first 

learn in a simpler environment before learning in the target 

environment. For heterogeneous multi-agent tasks, we propose 

selective recognition, in which an agent recognizes a partner, 

with whom it can cooperate to earn rewards, selectively. By 

means of simulations in which two types of agents cooperated to 

capture prey, we verified that, using our proposed methods, 

agents are able to differentiate agents they should cooperate with 

from those with whom they should not.  

Keywords—reinforcement learning; multi-agent system; 

heterogeneous agent; 

I.  INTRODUCTION 

As work in various fields become increasingly automated, 
societal expectations for the widespread availability of more 
versatile robots are on the rise. In this situation, multi-agent 
systems [1] that facilitate the execution of complex tasks by 
cooperative action among multiple autonomous agents have 
attracted increased attention. In particular, Multi-Agent 
Reinforcement Learning (MARL) [2] is viewed as being 
effective in complex environments such as the real world 
because of its excellent versatility.  

In a multi-agent environment, an agent learns its action 
regarding other agents as a part of the environment. Other 
agents also act according to learning rules. Thus, in the view of 
an agent, environmental changes are affected by the progress of 
the learning of other agents. Ito and Kanabuchi [3] proposed a 
learning scheme that reduces learning time significantly. In the 
first stage of their proposed learning scheme, some agents have 
a limited perception of the environment, whereas other agents 
have a full perception. Subsequently, after all agents have 
become intelligent, they all fully perceive the environment. Not 
only is the learning duration reduced, but in after-learning 
solution convergence, the performance of their scheme is 
almost equivalent to the performance of fully perceiving agents. 

In reinforcement learning, if an agent earns no reward over a 
long period of time, reinforced values become similar to each 

other/moderate and the agent selects actions randomly, i.e., it 
forgets good behaviour. More than ever, MARL is likely to 
frequently encounter this kind of situation. As a solution, this 
paper proposes a phased learning method in which agents first 
learn in a simpler environment before learning in the target 
environment.  

Previous studies of MARL reported on acquisition of 
cooperative behaviour among homogeneous agents. However, 
in the real world, situations that require cooperative behaviour 
among heterogeneous agents often arise. Zhang et al. [4] 
proposed a scheme in which an agent utilizes the reinforced 
value of others at a rate corresponding to their perceived 
reliability. This scheme enables an agent to automatically 
distinguish superior or inferior partners with whom to 
cooperate. However, this method of using a partner’s 
reinforced value can be applied only in situations in which that 
agent and the partner’s optimal behaviour are the same or 
similar. Consequently, this method is inappropriate in cases 
where cooperative behaviour is required among heterogeneous 
agents.  

This paper also proposes a selective recognition method in 
which an agent recognizes a partner with whom it can 
cooperate to earn rewards, selectively. Further, scenarios in 
which the agent has not determined which partner it ought to 
cooperate with are considered. We also verify via simulation 
that, using our proposed method, agents are able to distinguish 
between other agents that they should and should not cooperate 
with in order to earn rewards.  

 

II. EXPERIMENTAL TASKS 

Fig. 1 displays an example of our simulation setup for the 
prey capturing task. The simulation map has a torus topology. 
Thirty hunters made up of two different species and 30 preys, a 
total of 90 agents, exist in the map. A hunter agent of one 
species was rewarded if it caught prey in cooperation with an 
agent from the other species. Conversely, it did not get a 
reward if it did so with an agent from its own species. Agents 
were able to see the nearest 20 × 20 grids. Preys tried to escape 
from the nearest hunter in sight. All agents stayed where they 
were or moved one grid per time step in either of eight 
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directions. An episode was concluded when all preys were 
caught or 3000 time steps had passed. 

 

 

 

III. LEARNING RULE OF THE HUNTER 

We utilized Q-learning for the learning rules of the hunter, 
with softmax action selection. 

A. Definition of state and action  

State 𝑠𝑡 of an agent at time step t consists of the direction of 
the nearest prey 𝑠1𝑡 and that of the nearest partner hunter s2t. 
The direction is either of four quadrants {the first to the fourth} 
or four axes {+𝑥, +𝑦, −𝑥, −𝑦 }. To reduce the total number of 
possible states, the nearest prey and hunter directions are 
rotated so that the nearest prey is either in the first quadrant or 
on the +𝑥  axis. Optimal action differs depending on the 
locational relation of prey and partner. As depicted in Fig. 2, 
s2t  is in the first quadrant, s2t′ must therefore be partitioned 
more. States are partitioned into two such that the partner is 
located on either the right or left side of a line through the 
hunter and the prey. From the above, 𝑆1𝑡(∋ 𝑠1𝑡), 𝑆2𝑡(∋ 𝑠2𝑡) 
have three states and 10 states, respectively. A ∋ 𝑎𝑡 has nine 
actions (eight directions and stay). 

B. State transition probability and entropy 

 State transition probability is calculated by softmax as 
outlined below. Entropy is also calculated by the following 
equation: 

𝑃(𝑎𝑡|𝑠1𝑡 , 𝑠2𝑡) =
exp [𝑄(𝑠1𝑡 , 𝑠2𝑡 , 𝑎𝑡)/𝑇]

∑ exp [𝑄(𝑠1𝑡 , 𝑠2𝑡 , 𝑏)/𝑇]𝑏∈𝐴

 

𝐼 =
1

𝑁
∑ ∑ 𝑃𝑖

𝑠

(𝑠) ∑ 𝑃𝑖(𝑎|𝑠) log 𝑃𝑖(𝑎|𝑠)

𝑎

𝑁

𝑖

 

𝑃𝑖(𝑠) is the probability that agent i has entered state s in the 
episode. 𝑃𝑖(𝑎|𝑠) is the state transition probability, and N is the 
number of agents. Entropy is the standard value of learning 
progress calculated at the end of each episode. 

C. Learning parameters 

The Q-learning parameters are the following, learning 

parameter, α = 0.1 , discount parameter, γ = 0.99 , 

temperature parameter, Τ = 0.6,  reward, R = 10, and initial 

Q-values = 0.1. Reward applies to all hunters to cooperate for 

prey. Update Q-values is the same as in the regular Q-learning 

method. 

IV. PROPOSED METHODS 

A. Phased learning method 

At the beginning of learning, each agent’s action is virtually 

random (according to initial Q-values), so an agent’s learning 

will not proceed. In our simulation, an agent could not earn 

reward without cooperating with a dissimilar agent to catch 

prey; thus, agents rarely earned a reward. Further, if a number 

of agents earned rewards and performed their actions well, 

none of those agents could get the next reward, and they also 

had to forget the Q-values learned before. Earning reward is 

difficult without advanced learning by many agents. We 

conducted simulations in maps of sizes 50 × 50 and 60 × 60. 

In both simulations, the hunters could not catch all preys 

within 3,000 time steps, even after learning in 10,000 episodes. 

Further, entropy did not converge. 

Consequently, we made the agents first learn in a simple 

environment and applied a moderate superior Q-value to all 

agents; after which they were made to learn in the target 

environment. We consider that this method results in a rapid 

start to learning. Figs. 3 and 4 show that the entropy is now 

smooth, with moving average of 30 episodes.  

Fig. 3 shows the map length and breadth expanded by five 

grids after every 4,000 episodes. The map size also changed 

from 30 × 30 to 60 × 60. The total number of episodes began 

at 40,000 and changed afterwards to 60 × 60 or 16,000 

episodes. 

Fig. 3 shows that agents could catch all preys in almost all 

episodes and that the steps converged. In the 60 × 60 map, 

entropy was likely to converge. The experiment showed that 

prior learning is effective as a precursor to learning in 

complex environments in which agents have many states. 

 

B. Selective recognition method 

In this section, we consider the selective recognition method, 

which is applicable for heterogeneous agents. In this method, 

an agent recognizes a partner, with whom it can cooperate to 

earn rewards, selectively. We conducted a simulation 

experiment to verify this method. In the simulation, several 

hunters knew partner hunters with whom they could cooperate 

and recognized only such partners.  

Further, we considered the situation in which an agent does 

not know which agent it ought to cooperate with. 

 

Fig. 1 Simulation map    Fig. 2 Partner and prey in the same directions 

: Hunter2 : prey: Hunter1 : candidate for optimum action

 

(a) Step  (b) Entropy 

Fig. 3. Result of phased learning method 
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Consequently, we verified that agents were able to 

automatically distinguish other agents with whom they ought 

to cooperate as well as those with whom they should not. Each 

agent had an array of binary values with length equal to the 

total number of other hunters. Each element of the array 

signified whether the corresponding indexed hunter was to be 

cooperated with. In each episode, the agent either 1) 

recognized all hunters and updated the values of the array or 

2) recognized only hunters with a true value in the array. 

When an agent applied 1), that agent recognized all agents. If 

the agent then spotted and captured a prey, the element 

corresponding to the agent it cooperated with changed to true. 

On the other hand, if the agents spotted a prey but could not 

capture it, the element corresponding to the partner agent 

changed to false. When an agent applied 2), the agent 

recognized only agents with the value true in the array and 

acted. In addition, when 2) is applied, the array is not updated. 

The exploration rate was 1):2) = 2:8 in each episode. 

Fig. 4 shows the results obtained using this method. 

“heteroN” signifies that N hunters out of 30 were 

heterogeneous hunters. Further, “discriminate” signifies all 

hunters automatically distinguished, as described in the 

previous paragraph. 

Fig. 4(a) shows that the convergence speed of the time steps 
was quicker according to the increase in hetero, and Fig. 4(b) 
shows that the convergence steps decreased according to the 
increase in hetero. Fig. 4(c) shows that entropy decreased with 
increase in hetero. In addition, the result shows that the 
selective recognition method had the faster learning speed. In 
addition, Fig. 4 shows that discriminate trial was similar to the 
hetero30 trial and that the performance was superior to 
hetero0s after converging. Thus, the validity of automatic 
distinction was verified. 

 

V.         CONCLUSION 

This paper discussed the acquisition of cooperative 

behaviour among heterogeneous agents through simulations in 

which two types of agents must cooperate in order to capture a 

prey. 

We proposed a phased learning method in which agents 

first learn in a simpler environment before learning in the 

target environment. The resulting experiment conducted 

showed that the learning solution converged in the early 

episodes using this learning method. Further, in environments 

in which learning solutions cannot converge using common 

reinforcement learning, learning by the phased learning 

method still resulted in convergence. Thus, this method can be 

applied in complex environments and environments with a 

large number of states.  

This paper also proposed a selective recognition method 

in which an agent recognizes a partner, with whom it can 

cooperate to earn rewards, selectively. The subsequent 

experiment conducted showed that learning using this method 

is superior in convergence performance to the learning 

solution. Further, we verified experimentally that agents were 

able to differentiate agents they should cooperate with from 

those with whom they should not, proving that the method is 

effective. 

 

REFERENCES 

[1] Yoichiro Maeda, “Evolutionary simulation for co-operative behavior 
learning on multi-agent robots,” Japan Society for Fuzzy Theory and 
Systems, vol. 13, no. 3, pp. 57-67, 2001. 

[2] Hajime Kimura, Kazuteru Miyazaki, Shigenobu Kobayashi, “A 
guideline for designing reinforcement learning systems,” Journal of the 
Society of Instrument and Control Engineers, vol. 38, no. 10, pp. 618-
623, 1999. 

[3] Akira Ito, Mitsuru Kanabuchi, “Speeding up multiagent reinforcement 
learning by coarse-graining of perception: The hunter game,” 
Electronics and Communications in Japan, vol. 84, no. 12, pp. 37–45, 
December  2001. 

[4] Kun Zhang, Yoichiro Maeda, Yasutake Takahashi, “Learning model 
considering the interaction among heterogeneous multi-agents,” Journal 
of Japan Society for Fuzzy Theory and Intelligent Informatics, vol. 24, 
no. 5, pp. 1002-1011, 2012

 

 

(a)   Steps (to 500 episodes) 

 

(b) Steps  

 

(c) Entropy 

Fig. 4.  Result of selective recognition method 
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