
Helping Testers by
Fault-Prone Functionality Prediction

Keiichi TABATA, Haruto TANNO, Morihide OINUMA
Software Innovation Center

Nippon Telegraph and Telephone
Kounan 2–13–34, Minato, Tokyo 108–0038

Email: {tabata.keiichi haruto.tanno oinuma.m}@lab.ntt.co.jp

Abstract—In this paper, we propose a technique to predict
fault-prone software functionality, instead of fault-prone module.
The granularity of prediction is not a line number nor a function
name in a source code, but a software functionality from point
of view of testers who are dedicated to software testing. Our
approach makes it possible for testers to find faults efficiently
and effectively on test case creation and test case execution. We
applied the proposed technique to an open source project on
github. The result graphically suggests that we can predict fault-
prone software functionality using source code repository mining.

I. INTRODUCTION

To ensure software quality, software testing forms an
important part of software development project. However, any
software development project has limited amount of time and
resource for software testing. Therefore, it is required for
testers to find faults efficiently and effectively.

In practical software testing, projects have testers who are
dedicated to software testing. Testers first read and understand
requirement specification of system under test. Then testers
construct test cases, which include pre-requisite, testing steps
and post-requisite. Figure 1 is an example test case spread-
sheet. Finally, testers run test cases by their hands.

Through this typical testing process, testers, in most cases,
are not aware of program structure such as file, class, method
and line number.

While many studies have been conducted to propose how
to find more faults on software testing, such techniques are
mainly focused on unit testing which is done by programmers.
Unlike these studies, our effort is focused on system testing
done by testers.

Our proposed technique takes advantage of fix information
from source code repository such as git[1]. In other words,
we extract hints of software testing from source code reposi-
tory which contains evolutionary history of each development
project.

Fig. 1. Example test case spreadsheet

II. PREVIOUS STUDIES

Studies on fault-prone module prediction[2][3] can be
fallen into two categories based on prediction scope. One
is inter-version prediction, and the other is inter-program
prediction. In either case, the grain of prediction is premised on
program structure such as file, class, method and line number.

Fix cache[4] is an variation of fault-prone prediction. It
predicts possible source code location to be fixed. It is based
on a heuristic that “a source code location which was changed
recently will be changed in the near future”.

While the previous studies showed how to predict fault-
prone locations in source codes, typical testers are not aware
of source code structure in programming language. Testers read
and understand requirement specification documents in natural
language.

To bridge this gap, we focused on logical coupling[5][6].
Logical coupling is a heuristic that “a group of source code
locations with co-occuring changes is likely to have high
association in functionality”.

III. PROPOSED TECHNIQUE

Our proposed technique achieves both fix cache and logical
coupling at same time using graph clustering. It predicts fault-
prone software functionality, such as grain of items described
in requirement specification documents. It has three steps.

First, create an undirected graph, namely G. Each node
of graph G represents single source code location, and each
edge represents what two source code locations have changed
at same time.

Second, apply graph clustering algorithm such as markov
clustering [7] to graph G, and inquire cluster set, namely Cn.

14SB0086 (c) 2015 IEICE

2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT)

94



Property Description
Name ucc-c-compiler
Purpose C compiler
Language C
Started July 2011
VCS git
LOC 59488
Committers 1
Evaluated October 2013
Commits 3814

TABLE I. EVALUATED OPEN SOURCE REPOSITORY

nodes clusters
2-5 76
6-10 16
11-50 19
51-100 5

TABLE II. RESULTED CLUSTERS

Each cluster in cluster set Cn represents functionally related
source code positions.

Finally, for each cluster in cluster set Cn, estimate suitable
software functionality described in specification documents.

At the present, we execute the final step manually. Thus
evaluation is limited to first and second step. We discuss about
the final step in section V.

IV. EVALUATION

We applied the proposed method to an OSS source code
repository from github. Table I is the detailed information of
the repository.

To confirm the effectiveness of proposed method qualita-
tively and visually, we created a graph adjacency matrix of
graph G, namely M. Figure 2 shows the heat map of co-
occurring fixes. Here, we assumed “co-occurring” as changes
in a single commit, and also assumed “fix” as changes in a
commit which has string “fix” in its commit message[8].

After creating matrix M, we applied Markov clustering
algorithm to it. Figure 3 is the result graph of Markov
clustering algorithm, namely H. Table II is the detailed cluster
information.

In the context of logical coupling, graph H reveals func-
tional relations between fixed source code positions. In addi-
tion, according to fix cache studies, clusters in graph H are
likely to be changed in the near future because clusters are
consist of recent changes. Therefore, we can predict fault-
prone functionality using this graph.

Fig. 2. Co-occurring fixes in matrix view

Fig. 3. Clustered co-occurring fixes in graph view

V. FUTURE WORK

The proposed method makes it possible for testers to know
the presence of fault-prone software functionality. However,
estimating related item in requirement specification for each
fault-prone functionality remains a matter of debate.

Some logical coupling studies use change report
analysis[9][10] to associate requirement specification and
source code positions. In a similar way, we may be able to
estimate items in requirement specification which must be
associated for source code positions via analyzing commit
log of source code repository.

If we apply change report analysis for commit log of source
code repository, we need natural language processing approach

14SB0086 (c) 2015 IEICE

2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT)

95



to inspect commit log. In that case, development process may
require programmers to describe some formalized information
in commit log.

VI. CONCLUSION

In this paper, we proposed a technique to predict fault-
prone functionality instead of fault-prone module.

The proposed technique helps testers to know fault-prone
software functionality in a grain of software specification.

After estimating items in requirement specification which
must be associated for fault-prone software functionality,
testers have two advantages on software testing.

First, testers can know hot spots of fault in advance of real
test result. This is nearly predicting software quality in scope
of functionality before testing.

Then, testers can prioritize test cases by fault-proneness and
run test cases intensively on specific functionalities. Because
any development project has limited time for software testing,
prioritization of test cases is very important.

REFERENCES

[1] D. Spinellis, “Git,” Software, IEEE, vol. 29, no. 3, pp. 100–101, May
2012.

[2] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules
in telephone switches,” Software Engineering, IEEE Transactions on,
vol. 22, no. 12, pp. 886–894, Dec 1996.

[3] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-
grained module histories,” in In Proceedings of 34th International
Conference on Software Engineering, ICSE’12, 2012, pp. 200–210.

[4] S. Kim, T. Zimmermann, E. Whitehead, and A. Zeller, “Predicting
faults from cached history,” in In Proceedings of 29th International
Conference on Software Engineering, ICSE ’07, 2007, pp. 489–498.

[5] H. Gall, M. Jazayeri, and J. Krajewski, “Cvs release history data for
detecting logical couplings,” in In Proceedings of Sixth International
Workshop on Principles of Software Evolution, 2003, pp. 13–23.

[6] R. Robbes, D. Pollet, and M. Lanza, “Logical coupling based on fine-
grained change information,” in Reverse Engineering, 2008. WCRE ’08.
15th Working Conference on, Oct 2008, pp. 42–46.

[7] E. AJ1, V. Dongen, and O. CA, “An efficient algorithm for large-scale
detection of protein families,” Nucleic Acids Res., vol. 30, no. 7, pp.
1575–84, Apr 2002.

[8] A. Mockus and L. Votta, “Identifying reasons for software changes
using historic databases,” in In Proceedings of International Conference
on Software Maintenance 2000, 2000, pp. 120–130.

[9] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in In Proceedings of International
Conference on Software Maintenance, ICSM ’98, 1998, pp. 190–198.

[10] M. D’Ambros and M. Lanza, “Reverse engineering with logical cou-
pling,” in In Proceedings of 13th Working Conference on Reverse
Engineering, WCRE ’06, 2006, pp. 189–198.

14SB0086 (c) 2015 IEICE

2015 10th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT)

96


