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1. Introduction
Popular DOA methods, such as MUSIC [1]and ESPRIT [2], are known to yield high resolution but suffer

from three drawbacks. Firstly the total number of signals impinging on the array, including both signals of
interest(SOIs) and interference, is less than the number of sensors or the characteristics of interfering signals
are known so that their effects can be subtracted; secondly it is impossible to resolve two signals spaced more
closely than the resolution threshold of the array when only one signal is a SOI; thirdly the noise characteristics
of the sensors and the environment are known or they are accurately modelled as independent and identically
distributed gaussian random processes. Therefore signal selective Cyclic MUSIC [3]-[4] and Cyclic ESPRIT [5]
presented effectively overcome these drawbacks by exploiting the differing spectral correlation characteristics
of the different signals.These cyclic algorithms perform poorly when coherent or highly correlated signals are
present. Thus a signal selective Unitary Cyclic ESPRIT algorithm is proposed to circumvent the drawback, which
has a better performance in the presence of multipath propagation in this paper. This algorithm not only reduces
the computational complexity by real-valued eigendecomposition, but also allows to select desired signals and
to ignore interferences by exploiting the cyclostationarity property of the SOIs.

2. Cyclic ESPRIT algorithm
Consider a Uniform Linear Array (ULA) composed ofm omnidirectional sensors.Supposed narrowband

farfield sources with center frequencyw0 impinging from the directionsθ1, · · · , θd.Assume that there areN
snapshotsx(1),x(2), · · · ,x(N) available, the observation vector can be modelled as

x(k) = As(k) + i(k) + n(k) (1)

whereA = [a(θ1), · · · ,a(θd)] is them×d matrix of the signal direction vectors, anda(θi) is them×1 steering
vector. Ands(k) = [s1(k), · · · , sd(k)]T is the vector of cyclostationary signals with cycle frequencyα. i(k) is
the vector of interfering sources with cyclostationary property, andn(k) is the vector of sensor noise. Hence for
some cyclic frequencyα and some lag parameterτ , the cyclic autocorrelation matrix of the observation vector
is defined by

Rα
xx(τ) = 〈x(k)xH(k + τ)e−j2παk〉 = ARα

ss(τ)AH (2)

where
Rα

ss(τ) = 〈s(k)sH(k + τ)e−j2παk〉 (3)

is thed×d cyclic autocorrelation matrix of the cyclostationary signal vector.〈·〉 denotes the finite time average
operator, and superscriptH denotes complex conjugate transpose of a vector or matrix. Depending on type of
modulation used, the cycle frequencyα is usually equal to the twice of the carrier frequency, multiple of the baud
rate, spreading codes repetition rate, chip rate or combinations of these. Compared with the covariance matrix
exploited by ESPRIT algorithm, the cyclic autocorrelation matrix exploited by the Cyclic ESPRIT method is
generally not Hermitian. Then, instead of using the eigenvalue decomposition (EVD), Cyclic ESPRIT algorithm
uses the singular value decomposition (SVD) as follows

Rα
xx(τ) = [Us Un]

[∑
s 0

0
∑

n

]
[Vs Vn]H (4)

Obviously, the structure of steering vector matrixA implies that it can be decomposed intoA1,A2 ∈ Cm−1×d

such that the relationship [6] between them can be written as

A2 = A1Φ (5)

whereΦ = diag{e−jw0τ1 , e−jw0τ2 , · · · , e−jw0τd} is a rotation operator. If the cyclic autocorrelation matrix of
the cyclostationary signal vectorRα

ss(τ) is nonsingular,A andUs share a common column space as follows

R(A) = R(Us) (6)

Thus there must exist a unique nonsingularT such that

AT = Us (7)

Furthermore, in conjunction withA1 andA2, U1 andU2 are obtained by the relation

U2 = U1Ψ (8)

whereΦ andΨ have the same eigenvalues. Finally, DOAs of SOIs by these eigenvalues are estimated.
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3. Unitary Cyclic ESPRIT algorithm
Let a ULA with L identical sensors{1, · · · , L} be divided into overlapping subarrays of sizem, with sensors

{1, · · · ,m} forming the first subarray, sensors{2, · · · ,m+1} forming the second subarray, etc. Thus the vector
of received signals at thepth subarray can be written as follows

xp(k) = AΦ(p−1)s(k) + ip(k) + np(k) (9)

whereΦ denotes thepth power ofd×d diagonal matrix.Then the forward covariance matrix of thepth subarray
is defined by

Rα
p (τ) = AΦ(p−1)Sα

p (τ)[Φ(p−1)]HAH (10)

whereSα
p (τ) is therefore given by

Sα
p (τ) = Rα

ss(τ)[Φ(p−1)]HAHAΦ(p−1)[Rα
ss(τ)]H (11)

and the backward covariance matrix of thepth subarray is defined as follows

R̄α
p (τ) = JA∗[Φ(p−1)]∗[Sα

p (τ)]∗[Φ(p−1)]∗HA∗HJ

= AΦ(2−m−p)[Sα
p (τ)]∗[Φ(2−m−p)]HAH (12)

whereJ ∈ Cd×d is the exchange matrix with ones on its antidiagonal and zeros elsewhere and superscript∗
denotes complex conjugation. So the forward backward smoothed covariance matrix [7]-[8] is introduced by

R̃α
FB(τ) =

1
2P

P∑
p=1

(Rα
p (τ) + R̄α

p (τ)) (13)

or more compactly as
R̃α

FB(τ) = ASα
FB(τ)AH (14)

whereSα
FB(τ), the modified cyclic autocorrelation matrix of the cyclostationary signals, is given by

Sα
FB(τ) =

1
2P

P∑
p=1

(Φ(p−1)Sα
p (τ)[Φ(p−1)]H + Φ(2−m−p)[Sα

p (τ)]∗[Φ(2−m−p)]H) (15)

A complex matrixG is called centro-Hermitian [9]-[10] ifG = JG∗J. Thus, the modified cyclic autocorre-
lation matrixR̃α

FB(τ) is centro-Hermitian.
By exploiting the centro-Hermitian property of̃Rα

FB(τ) , we introduce the real-valued covariance matrix as

C = QHR̃α
FB(τ)Q (16)

whereQ is any unitary column conjugate symmetric matrix, for example

Q =
1√
2

[
I jI
J −jJ

]
,Q =

1√
2

[
I 0 jI

0T
√

2 0T

J 0 −jJ

]

can be chosen for arrays with an even and odd number of sensors, respectively, whereI is the identity matrix and
0 is the vector[0, 0, · · · , 0]T . Compared with the modified cyclic autocorrelation matrix (14), the real-valued
covariance matrix is obtained as

C = ÃSα
FB(τ)ÃH (17)

whereÃ = QHA denotes the relationship between the former and new manifolds.
Contrary to the cyclic covariance matrixRα

xx(τ) exploited by Cyclic ESPRIT algorithm, the forward backward
smoothed covariance matrix̃Rα

FB(τ) presented is Hermitian. Let the eigendecompositions of the matrices (13)
and (14) be defined as

R̃α
FB(τ) = UΛUH = UsΛsUH

s + UnΛnUH
n (18)

C = EΓEH = EsΓsEH
s + EnΓnEH

n (19)

where

Us = [u1, · · · , ud],Un = [ud+1, · · · , um]
Λs = diag{λ1, · · · , λd},Λn = diag{λd+1, · · · , λm}
Es = [ε1, · · · , εd],En = [εd+1, · · · , εm]
Γs = diag{γ1, · · · , γd},Γn = diag{γd+1, · · · , γm}

and the subscriptss and n stand for signal- and null-space, respectively. The characteristic equation for the
matrix (13) is written as

R̃α
FB(τ)u = λu (20)

- 846 -



−5 0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

10
1

10
2

SNR(dB)

R
M

S
E

(d
eg

)
Cyclic ESPRIT
Unitary Cyclic ESPRIT

Fig. 1. Spatial spectra for environment containing two un-
correlated SOIs with−15◦ and−25◦ DOA and one interferer
with 15◦ DOA.
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Fig. 2. Spatial spectra for environment containing two coherent
SOIs with−15◦ and−25◦ DOA and one interferer with15◦
DOA.

which can be further rewritten as

QHR̃α
FB(τ)u = QHR̃α

FB(τ)QQHu

= CQHu
= λu (21)

Equation (21) can be identified as the characteristic one for the real-valued covariance matrix (16) . Hence, the
eigenvec-tors and eigenvalues of the matrices (14) and (16) are related as

E = QHU (22)

Thus,using equations (6)and (22), the important relationship betweenA and Ẽs is obtained as

R(A) = R(Ẽs) (23)

where
Ẽs = QEs (24)

In addition,in conjunction withU1 andU2, Ẽ1and Ẽ2 are extracted from the matrix̃Es.
Summary of Unitary Cyclic ESPRIT algorithm:
• Step 1: Choose the cycle frequency of desired signalsα and the optimalτ ;
• Step 2: Estimate the forward backward smoothed co-variance matrixR̃α

FB(τ) from the received data of
ULA;

• Step 3: Form the real-valued matrixC with the use of (16);
• Step 4: Find the signal subspaceEs of the real-valued matrixc , and detect the numberd of SOIs based

on AIC and MDL principle;
• Step 5: Based on equations (22) and (24), formẼ1 and Ẽ2;
• Step 6: Calculate the eigenvaluesφk(k = 1, · · · , d) of matrix pencil{Ẽ1, Ẽ2};
• Step 7: Estimate DOAs of SOIs by these eigenvalues.

4. Simulation Results
In this section, we present some simulation results to show the behavior of Unitary Cyclic ESPRIT algorithm

and to compare it with the Cyclic ESPRIT algorithm. Assume a ULA with eight omnidirectional sensors spaced
by a half wavelength of the coming signals. Incoming cyclostationary signals with central frequency0.1 are
generated with noise at cycle frequency0.2.

In the first simulation, the performance of Unitary Cyclic ESPRIT algorithm is affected by SNR. Two
uncorrelated SOIs arrive from−15◦ and−25◦ . The results for Cyclic ESPRIT and Unitary Cyclic ESPRIT
versus the SNR are plotted in Fig. 1.In the second simulation, the performance of Unitary Cyclic ESPRIT
algorithm is affected by SNR in the presence of interfering. Two uncorrelated SOIs arrive from−15◦ and
−25◦,and one interferer arrives from15◦ . The results for them are shown in Fig. 2.In the third simulation, the
performance of Unitary Cyclic ESPRIT algorithm is affected by SNR for coherent signals. Two coherent signals
arrive from−15◦ and−25◦. The results for them are shown in Fig. 3.In the fourth simulation, the performance
of Unitary Cyclic ESPRIT algorithm is affected by SNR in the presence of interfering for coherent signals.
Two coherent signals arrive from−15◦ and−25◦,and one interferer arrives from15◦ . The results for them are
shown in Fig. 4.

Figs.1-2 show how the SNR affects the DOA estimation for uncorrelated signals.And Figs.3-4 show how the
SNR affects the DOA estimation for coherent signals.The performance of the method is quantified by the root-
mean-square-error (RMSE) of200 independent DOA estimates.Unitary Cyclic ESPRIT algorithm and Cyclic
ESPRIT algorithm can separate uncorrelated signals, but only Unitary Cyclic ESPRIT algorithm can separate
coherent signals. As expected, the presence of the interfering has little effect on the SOIs.Therefore Unitary
Cyclic ESPRIT algorithm performs better than the Cyclic ESPRIT algorithm,both for correlated and uncorrelated
source scenarios.
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Fig. 3. Spatial spectra for environment containing two un-
correlated SOIs with−15◦ and−25◦ DOA and one interferer
with 15◦ DOA.
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Fig. 4. Spatial spectra for environment containing two coherent
SOIs with−15◦ and−25◦ DOA and one interferer with15◦
DOA.

5. Conclusion
Unitary Cyclic ESPRIT algorithm is proposed by constructing a new forward backward smoothed covariance

matrix in this paper. Simulation results suggest that the proposed approach has a better signal selectivity and
a better resolution power than Cyclic ESPRIT algorithm, by exploiting the property of the cyclostationarity of
incoming signals,both for correlated and uncorrelated source scenarios. At the same time this approach has low
computational complexity because of real-valued computation.
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