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1. Introduction

Popular DOA methods, such as MUSIC [1]and ESPRIT [2], are known to yield high resolution but suffer
from three drawbacks. Firstly the total number of signals impinging on the array, including both signals of
interest(SOIs) and interference, is less than the number of sensors or the characteristics of interfering signals
are known so that their effects can be subtracted; secondly it is impossible to resolve two signals spaced more
closely than the resolution threshold of the array when only one signal is a SOI; thirdly the noise characteristics
of the sensors and the environment are known or they are accurately modelled as independent and identically
distributed gaussian random processes. Therefore signal selective Cyclic MUSIC [3]-[4] and Cyclic ESPRIT [5]
presented effectively overcome these drawbacks t?/ exploiting the differing spectral correlation characteristics
of the different signals.These cyclic algorithms perform poorly when coherent or highly correlated signals are
ﬁresent. Thus a signal selective Unitary Cyclic ESPRIT algorithm is proposed to circumvent the drawback, which

as a better performance in the presence of multipath propagation in this paper. This algorithm not only reduces
the computational complexity by real-valued eigendecomposition, but also allows to select desired signals and
to ignore interferences by exploiting the cyclostationarity property of the SOls.

2. Cyclic ESPRIT algorithm

Consider a Uniform Linear Array (ULA) composed @i omnidirectional sensors.Suppogenarrowband
farfield sources with center frequenay, impinging from the direction®,,--- ,6,;.Assume that there ar&
snapshotx(1),x(2),--- ,x(N) available, the observation vector can be modelled as

x(k) = As(k) +i(k) + n(k) @)

whereA = [a(6;),--- ,a(fy)] is them x d matrix of the signal direction vectors, andd,) is them x 1 steering
vector. Ands(k) = [s1(k), -, sq(k)]T is the vector of cyclostationary signals with cycle frequencyi(k) is
the vector of interfering sources with cyclostationary property, @i} is the vector of sensor noise. Hence for
some cyclic frequency and some lag parameter the cyclic autocorrelation matrix of the observation vector

is defined by _
R (7) = (x(k)x" (k + 7)e™727%) = ARG (m) A @)

where )
R (1) = (s(k)s" (k + )e 727K) 3)

is thed x d cyclic autocorrelation matrix of the cyclostationary signal vectgrdenotes the finite time average
operator, and superscripf denotes complex conjugate transpose of a vector or matrix. Depending on type of
modulation used, the cycle frequeneys usually equal to the twice of the carrier frequency, multiple of the baud
rate, spreading codes repetition rate, chip rate or combinations of these. Compared with the covariance matrix
exploited by ESPRIT algorithm, the cyclic autocorrelation matrix exploited by the Cyclic ESPRIT method is
generally not Hermitian. Then, instead of using the eigenvalue decomposition (EVD), Cyclic ESPRIT algorithm
uses the singular value decomposition (SVD) as follows

Re(n) =10, U g 2 | v v, @
ObviousI%/, the structure of steering vector matAxmplies that it can be decomposed imig, A, € C™~1xd
such that the relationship [6] between them can be written as
Ay =A D )
where® = diag{eJwom e~JwoTz ... e~jwoTal js a rotation operator. If the cyclic autocorrelation matrix of
the cyclostationary signal vect®2,(7) is nonsingularA andU, share a common column space as follows
R(A) = R(Uy) (6)
Thus there must exist a unique nonsingulasuch that
AT = U, 7
Furthermore, in conjunction witlA; and A,, U; and U, are obtained by the relation
U, =U,¥ (8)

where® and ¥ have the same eigenvalues. Finally, DOAs of SOls by these eigenvalues are estimated.
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3. Unitary Cyclic ESPRIT algorithm
Let a ULA with L identical sensor$1, --- , L} be divided into overlapping subarrays of size with sensors
{1,---,m} forming the first subarray, sensof3, - - - ,m+1} forming the second subarray, etc. Thus the vector
of received signals at thgth subarray can be written as follows
xp(k) = A®PVs(k) + iy (k) + 1y (k) )

yvhder]ng) glebnotes theth power ofd x d diagonal matrix.Then the forward covariance matrix of pkie subarray
is defined by

a — « —1)1H A H
R (1) = AP VS (r) @~ VTA (10)
whereS$(7) is therefore given by
« « n—1)1H A H — a H
S5 () = Rg(r)[@P V)" AT AR VR (7)) (11)
and the backward covariance matrix of gl subarray is defined as follows
R« * —IxrQo * —1)1xH A xH
Ro(r) = JAT[@P V] [So(r) [P V]*HA]
= ABCISo ()] (@B HAH (12)

whereJ € C%*? is the ethan%e matrix with ones on its antidiagonal and zeros elsewhere and superscript
denotes complex conjugation. So the forward backward smoothed covariance matrix [7]-[8] is introduced by

P
~ 1 _
2a(r) = 55 DRI + Ry (7)) (13)
p=1
or more compactly as 5
R (1) = ASgg(T)A" (14)

whereS%.;(7), the modified cyclic autocorrelation matrix of the cyclostationary signals, is given by
P
1 - - —m—] * —m—
@ 5(r) = 5P Z(q)(p 1)52(7)@@ 1)]H + $(2-m-p) [Sg(T)] [(5(2 p)]H) (15)
p=1
A complex matrixG is called centro-Hermitian [9]-[10] iG = JG*J. Thus, the modified cyclic autocorre-
lation matrix R% 5 (7) is centro-Hermitian. _
By exploiting the centro-Hermitian property &% ;(7) , we introduce the real-valued covariance matrix as

C=Q"R%5(1)Q (16)
whereQ is any unitary column conjugate symmetric matrix, for example

111 i 1[I o I
Q=—7%|5 Jis Q=707 v2 0"
V2 RG] V23 0 -5
can be chosen for arrays with an even and odd number of sensors, respectivelyl ishbecidentity matrix and
0 is the vector{0,0,--- ,0]7 . Compared with the modified cyclic autocorrelation matrix (14), the real-valued

covariance matrix is obtained as - -
C = AS¢5(1)AH 17)

where A = Q¥ A denotes the relationship between the former and new manifolds.

Contrary to the cyclic covariance matdks, (7) exploited by Cyclic ESPRIT algorithm, the forward backward
smoothed covariance matrR% (1) presented is Hermitian. Let the eigendecompositions of the matrices (13)
and (14) be defined as

RS (1) = UAUX = U,A,UY 1 U, A, U (18)
C=ErE” =E,I.EY +E, I .EY (19)
where
Us = [u, - ,udq), Uy = [uger, -, Um]
A, = diag{\, -, N}, Ap = diag{ gy, s A}
E; = [e1, 24, En =[eat1, s &m)
I, = diag{y, -7}, Tn = diag{vas1, -, vm}

and the subscripts andn stand for signal- and null-space, respectively. The characteristic equation for the
matrix (13) is written as

RS 5 (T)u = \u (20)
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which can be further rewritten as
QHRQFB(T)“ = QHR%B(T)QQHU
= CQfu
= JAu (21)

Equation (21) can be identified as the characteristic one for the real-valued covariance matrix (16) . Hence, the
eigenvec-tors and eigenvalues of the matrices (14) and (16) are related as

E=Q"U (22)
Thus,using equations (6)and (22), the important relationship betveand E, is obtained as
R(A) = R(E,) (23)
where _
E, = QE; (24)

In addition,in conjunction witHU, and Us,, E;andE, are extracted from the matrik,.
Summary of Unitary Cyclic ESPRIT algorithm:

« Step 1: Choose the cycle frequency of desired signadéd the optimal- ;

« Step 2: Estimate the forward backward smoothed co-variance nfagix() from the received data of
ULA;
« Step 3: Form the real-valued matr®® with the use of (16);

« Step 4: Find the signal subspaEg of the real-valued matrix , and detect the numbef of SOIs based
on AIC and MDL principle;

. Step 5: Based on equations (22) and (24), f@&mand E,;

« Step 6: Calculate the eigenvalugs(k = 1,-- - ,d) of matrix pencil{E;, E,};
« Step 7: Estimate DOAs of SOIs by these eigenvalues.

4. Simulation Results

In this section, we ﬁresent some simulation results to show the behavior of Unitary Cyclic ESPRIT algorithm
and to compare it with the Cyclic ESPRIT algorithm. Assume a ULA with eight omnidirectional sensors spaced
by a half wavelength of the” coming signals. Incoming cyclostationary signals with central freqiiénaye
generated with noise at cycle frequerty. . ) ) )

In the first simulation, the performance of Unitary Cyclic ESPRIT algorithm is affected by SNR. Two
uncorrelated SOIs arrive from15° and —25° . The results for Cyclic ESPRIT and Unitary Cyclic ESPRIT
versus the SNR are Blotted in Fig. 1.In the second simulation, the performance of Unitary Cyclic ESPRIT
algorithm is affected by SNR in the presence of interfering. Two uncorrelated SOls arrive-fidgh and
—25°,and one interferer arrives froib° . The results for them are shown in Fig. 2.In the third simulation, the
performance of Unitary Cyclic ESPRIT algorithm is affected by SNR for coherent signals. Two coherent signals
arrive from—15° and —25°. The results for them are shown in Fig. 3.In the fourth simulation, the performance
of Unitary Cyclic ESPRIT algorithm is affected by SNR in the presence of interfering for coherent signals.
T\r/]vo co_hegze-nt ilgnals arrive from15° and —25°,and one interferer arrives froib° . The results for them are
shown in Fig. 4.

Figs.1-2 s%ow how the SNR affects the DOA estimation for uncorrelated signals.And Figs.3-4 show how the
SNR affects the DOA estimation for coherent signals.The performance of the method is quantified by the root-
mean-square-error (RMSE) @b0 independent DOA estimates.Unitary Cyclic ESPRIT algorithm and Cyclic
ESPRIT algorithm can separate uncorrelated S|f9nals! but only Unitary Cyclic ESPRIT algorlthm can Separate
coherent sugnals. As expected, the presence of the interfering has little ‘effect on the SOIs.Therefore Unitary
Cyclic ESPRIT algorithm performs better than the Cyclic ESPRIT algorithm,both for correlated and uncorrelated
source scenarios.
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5. Conclusion

Unitary Cyclic ESPRIT algorithm is proposed b¥] constructing a new forward backward smoothed covariance
matrix in this paper. Simulation results su%g?est that the %roposec_l approach has a better signal selectivity and
a better resolution power than Cyclic ESPRIT algorithm, by exploiting the property of the cyclostationarity of
incoming signals,both for correlated and uncorrelated source scenarios. At the same time this approach has low
computational complexity because of real-valued computation.
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