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1. Introduction
Microwave imaging of internal properties, shape and location of a scattering object re-

mains one of the most important and challenging problems in electromagnetics due to its
practical applications in biomedical diagnostics, nondestructive testing of materials, and de-
tection of buried objects. Many inversion methods have been proposed to solve the two- and
three-dimensional inverse scattering problems [1]-[15]. In most of these techniques, a regular-
ization method based on the minimization of a cost fuctional has been employed to circumvent
the ill-posedness of the problem.

In this paper, we present a new regularization method of accelerating an iterative inversion
algorithm of reconstructing the relative permittivity of a dielectric cylinder. The object lo-
cated in a homogeneous background medium is assumed to be illuminated with multifrequency
cylindrical waves. The inverse scattering problem of interest here can be formulated as the
solution to a nonlinear integral equation for a contrast function, which is related to the relative
permittivity of the object. A cost functional is defined as the sum of a residual error term in
the scattered electric field and an additional regularization term. Thus the inverse scattering
problem can be treated as an optimization problem where the contrast function is found by
minimizing the functional. The conjugate gradient method and the frequency-hopping tech-
nique [3] are applied to the optimization problem. The regularization parameter is determined
by minimizing the absolute value of the radius of curvature of the generalized cross-validation
(GCV) function [10]. Numerical results are given for dielectric circular cylinders to show the
comparison of the rates of convergence obtained for our regularization method and the con-
ventional one.

2. Theory

Fig. 1 Situation of the problem.

Consider a dielectric cylinder of relative
permittivity ²s(ρ), which is located in a ho-
mogeneous background medium of relative
permittivity ²b. The object with cross sec-
tion Ω is assumed to be infinitely long and
its axis is in the z-direction. TM cylindrical
waves with electric field Eip (= uzE

i
p(θ; ρ))

corresponding to frequency fp illuminate the
object, where uz is the unit vector in the z-
direction and p = 1, 2, · · · , P . Line sources
generating the incident waves are placed at
points with polar coordinates (ρ, θ + π). For
each illumination, measurements of the scat-
tered electric field Esp (= uzE

s
p(θ; ρ)) are

made at the observation points with polar co-
ordinates (ρ, φ). The situation of the prob-
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lem is illustrated in Fig. 1. The material property of the object is characterized by a contrast
function,

c(ρ) = ²s(ρ)− ²b. (1)

As is well known [10], the inverse scattering problem can be formulated as the solution to
the following nonlinear integral equation for the contrast function:

Esp(c; θ; ρ) = k
2
p

ZZ
Ω

c(ρ0)Etp(c; θ; ρ
0)Gp(ρ; ρ0) dρ0, ρ ∈ Ω (2)

where Ω denotes a domain outside of Ω, kp is a free-space wavenumber for the frequency fp,
and Gp(ρ; ρ

0) represents the two-dimensional Green’s function for the background medium
given by

Gp(ρ; ρ
0) = − j

4
H
(2)
0 (
√
²b kp |ρ− ρ0|) (3)

where H
(2)
0 is the zeroth-order Hankel function of the second kind. The total electric field

Etp(c; θ; ρ) inside the object, which is written as the sum of the incident electric field Eip(θ; ρ)
and the resultant scattered electric field Esp(c; θ; ρ), satisfies the linear integral equation,

Etp(c; θ; ρ) = E
i
p(θ; ρ) + k

2
p

ZZ
Ω

c(ρ0)Etp(c; θ; ρ
0)Gp(ρ; ρ0) dρ0, ρ ∈ Ω. (4)

The method of moments with pulse-basis functions and point matching [16] is employed to
discretize Eqs. (2) and (4).

Now the line sources generating the incident electric field and the observation points of
the scattered electric field are placed at the positions with polar angles θ = θl and φ = φm,
where l = 1, 2, · · · , L and m = 1, 2, · · · ,M . Let us define the cost functional,

F (c) =

LX
l=1

MX
m=1

¯̄
Esp(c; θl; φm)− Ẽsp(θl; φm)

¯̄2
+ α

ZZ
Ω

¯̄
c(ρ)− c−(ρ)

¯̄2
dρ (5)

where Ẽsp(θl; φm) and E
s
p(c; θl; φm) denote the scattered electric fields measured and calculated

for an estimated contrast function, respectively. Note that the scattered electric field measured
is simulated from the true contrast function. Furthermore, α is a regularization parameter,
and c−(ρ) is the function which is updated when a reduction in the residual error in the
scattered electric field becomes very small. The regularization parameter is now determined
by minimizing the absolute value of the radius of curvature of the GCV function g(α) [10],

Rg(α) =
[ 1 + g0(α)2 ]

3
2¯̄

g00(α)
¯̄ . (6)

Introducing the functional F (c), the inverse scattering problem is reduced to an optimiza-
tion problem where c(ρ) is found by minimizing F (c). The conjugate gradient method and the
frequency-hopping technique [3] are applied to the minimization of F (c). The gradient of the
functional can be derived from the Fréchet derivative of F (c) [4]. Then the (q+1)-th estimate
c(q+1)(ρ) of the contrast function is iteratively obtained from

c(q+1)(ρ) = c(q)(ρ) + λ(q)d(q)(ρ). (7)

The direction d(q)(ρ) may be obtained from the gradient of F (c) through the Polak-Ribière-
Polyak method [17], and the step size λ(q) is determined by using the Davies-Swann-Campey
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method [17]. The iteration terminates if the relative residual error δ in the scattered electric
field is finally less than a prescribed convergence criterion, where δ is defined by the first term
of the right side of Eq. (5) normalized by the norm of the scattered electric field measured.

3. Numerical examples
Numerical results are obtained for dielectric circular cylinders using the multifrequency

scattering data in microwave region. The numerical simulations are performed for the param-
eters normalized by the wavelength λ for the highest frequency in the background medium,
which is now assumed to be free space. 36 positions of line sources and 36 measurement points
for each illumination are uniformly distributed along a circle of radius 2λ. We employ four
frequencies, f1=1.5GHz, f2=3.0GHz, f3=4.5GHz, and f4=6.0GHz, in the frequency-hopping
technique. The current frequency is changed to the next higher-frequency when the difference
between δs obtained at the current and the next iterations takes the values less than 10−2 two
times in succession. The 2λ × 2λ square domain containing the object and the background
medium is uniformly subdivided into 32× 32 elementary square cells. Now the initial guess of
the contrast function is zero, i.e., the relative permittivity of the object is the same as that of
the background medium.

Let us consider the reconstruction of an object with the relative permittivity of 5.0 and
the radius of 0.8λ. Figure 2 illustrates the value of δ versus the number of iterations. The solid
and the dotted lines present the results obtained for our regularization method (method I)
and the conventional one (method II). Figure 3 shows the reconstructed results of the relative
permittivity after 189 and 228 iterations for the method I and the method II, where δ = 10−4.
For reference, the true profile of the relative permittivity is also depicted by the thin solid line
in Fig. 3.

Figures 4 and 5 present the results for an object with the relative permittivity of 4.0 and
the radius of 0.8λ. These results are obtained from the scattering data with signal-to-noise
ratio (SNR) of −20dB. The final convergent solutions for δ = 10−2 in Fig. 5 are the results
after 64 and 78 iterations corresponding to the method I and the method II.

It is seen from Figs. 2−5 that the rate of convergence obtained for our regularization
method is faster than that for the conventional one to achieve the same accuracy in the recon-
structed profile.

Fig. 2 Relative residual errors in the scat-
tered electric field obtained for noise-free
case.

Fig. 3 Reconstructed results of the relative
permittivity obtained for noise-free case.
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Fig. 4 Relative residual errors in the scat-
tered electric field obtained for SNR=−20dB.

Fig. 5 Reconstructed results of the relative
permittivity obtained for SNR=−20dB.

4. Conclusion
A new regularization method, which accelerates an iterative inversion algorithm of recon-

structing the relative permittivity of a dielectric cylinder, has been presented. The algorithm
is based on the conjugate gradient method and the frequency-hopping technique. The regu-
larization parameter has been determined by minimizing the absolute value of the radius of
curvature of the GCV function. The effect of measurement error in the scattering data on the
reconstructed result has been also considered. It is confirmed from the numerical results for
dielectric circular cylinders that the rate of convergence obtained for our regularization method
is faster than that for the conventional one.
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