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1. Introduction 
The Finite-Difference Time-Domain (FDTD) Method is one of the efficient time domain 

methods widely used in studying the transient and wide-band phenomena in various electromagnetic 
and microwave systems. Stair-case approximation of the boundary of the modeled geometry is a major 
source of errors in the FDTD algorithm. To overcome stair-casing errors, the FDTD algorithm has 
been hybridized with the finite element method (FEM) in the time domain [1]. This hybrid algorithm 
facilitates the accurate modeling of geometries by meshing the region in the vicinity of the geometry 
using unstructured grids conforming to the geometry, while other parts of the physical domain is 
modeled using traditional FDTD method with Cartesian grids. In this communication, we compare the 
numerical stability of the time-marching algorithm for four different hybridization schemes. An 
eigenvalue analysis of the global iteration matrix, representing the time marching hybrid algorithm is 
performed to compare and analyze the numerical stability of the different hybridization schemes. 
Further numerical experiments are performed to verify the stability analysis. 

 
2. Hybrid Algorithm Formulation 

The original FE-FDTD method proposed in [1] splits the physical space into two overlapping 
domains viz., the Finite Difference, FDΩ and Finite element, FEΩ  regions. The overlapping region is  

 

(a). Scheme I (b). Scheme II (c). Scheme III 
 

(d). Scheme IV 

 
 
 
 
 
 
 
 
 
 

(e). PEC Cylinder model 
Fig.1 Hybrid Mesh for the different hybridization strategies. 
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one FDTD cell thick. Traditional leapfrog scheme on a staggered grid is used for the unknowns in FDΩ . 
Triangular elements with unconditionally stable  Newmark -β scheme is used for temporal 
discretization for the unknowns in FEΩ . Scheme I is that used in [1],[2]. Scheme II is similar to the 
one followed in [2], where the one FDTD cell thick overlapping region between the two domains is 
triangulated into four triangular elements, instead of two as used in [2]. Scheme III follows the 
strategy proposed in [3]. In [4], Scheme II was shown to introduce less unphysical reflections in the 
numerical solution and hence has better accuracy compared to Scheme I and III. In the current 
proposed hybridization Scheme IV, FEΩ is discretized such that the overlapping region is modeled 
using rectangular edge elements and the rest using triangular finite elements. The hybrid mesh for the 
four different schemes is shown in Fig .1. In Fig. 4(d) and (e), the shaded cells are the rectangular 
elements in FEΩ . 
 
3. Stability analysis 

Temporal instabilities often arise in the FE-FDTD hybrid algorithm [2,3]. In [5] filtering 
techniques are proposed to control the stability of the algorithm. In [3], Backward Difference Formula 
(BDF-2) method is used for temporal discretization to improve the stability. Numerical stability of a 
time-marching algorithm represented by  

1 ( , )n nt h+ = ∆ ∆v G v  (1) 
 
where nv is the unknown at time n t∆ (1) can be investigated by analyzing the eigenvalues of the 
global iteration matrix,G . The necessary condition for stability is ( ) 1ρ ≤G  where ( )ρ G is the 
spectral radius of the matrixG [6]. To obtainG , the update equations for the unknowns in FDΩ and 

FEΩ  have to be combined. In what follows, the notation used are: FDe is the electric field unknowns 
in FDΩ , FEe is the electric field unknowns on the boundary of FEΩ , FDe  are the field unknowns in 
the overlapping region that conform to the grid in FDΩ and finally, FEe are the unknowns in FEΩ . 
Consider the FDTD update equation for unknowns in FDΩ . By eliminating the magnetic field 
unknowns, we obtain 

1 1
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The implicit update equation for the unknowns in FEΩ  is written as 
1 1
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13 12 11 FE 13 12 11 FE 13 12 11 FE
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The matrices, M and N are given as 
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2 2
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t t
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2 (1 2 )

t t

t c tβ
⎡ ⎤
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where T and S are the traditional finite element mass and stiffness matrices, respectively. β is the 
parameter in Newmark- β schemes which is unconditionally stable for 0.25β ≥ . For the FE/FDTD 
hybrid algorithm, (2) and (3) are combined to obtain a single 2-step electric field update equation 
given as 

1 1
1 0 1

n n n+ −= −Q e Q e Q e  (4) 

where the matrices 1Q and 0Q and the vector e are defined as 
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Eq. (4) can be written in the form of (1) such that  

1

n
n

n−

⎡ ⎤
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e
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Using (5) it can be shown that the eigenvalues of G , λG are related to the eigenvalues of 1
1 0
−Q Q , 

λQ as  

2

1
2 2

λ λ
λ ⎛ ⎞

= ± −⎜ ⎟
⎝ ⎠

Q Q
G  (6) 

Upon computing 0Q and 1Q for the given hybrid mesh, the eigenvalues of the iteration matrix λG and 
hence ( )ρ G can be computed. ( ) 1ρ ≤G  is the necessary condition for stability (though not 
sufficient, sinceG is not a normal matrix [6]). 
 
4. Numerical Experiments 

The computation of the 0Q and 1Q is straight forward in Schemes I, II and IV since the 
unknowns FEe and FDe in (1) and (2) conform to each other, respectively. However, this is not the 
case in scheme III, which is also known to lead to instabilities [3]. An eigenvalue analysis is not 
performed on this scheme. It is worth noting that in Scheme II, 23 23= =M N 0  and in Scheme 
IV, 13 13= =M N 0 . This is because of the nature of finite elements used in discretizing the overlapping 
region. The eigenvalues of the iteration matrix in schemes I, II and IV for mesh shown in Fig .1(a), (b) 
and (d), are displayed in Fig. 2. The space step is h∆ =0.5m and time step is determined such 
that 2 2 20.5c t h∆ = ∆ . In Table 1, the spectral radius and the percentage of eigenvalues whose modulus 
is greater than 1 are shown. It is observed that ( )ρ G in Scheme IV is closer to 1, and hence expected 
to have better stability. Also, of the three schemes it has the least number of eigenvalues with modulus 
greater than 1. It is concluded that though all the schemes considered are unstable, Scheme IV is 
expected to have better stability. The four hybridization schemes are used to compute the scattering  

 
Table 1. Eigenvalue statictis of iteration matrix for different schemes 
 Scheme I Scheme II Scheme IV 

( )ρ G  1.03769 1.04277 1.00269 
% of λG > 1 13.39 10.76  3.56 

 
 

(a) Scheme I (b) Scheme II (C)Scheme IV 
Fig.2 Eigenvalues of the iteration matrix of the different schemes  
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Fig. 3. Backscattered Hz(t) component by a PEC cylinder using the different schemes 
 
from a PEC cylinder. A differentiated Gaussian pulse with spectral content in the band 0.8GHz - 2 
GHz is the incident along the x̂ direction. The backscattered time domain Hz component is shown in 
Fig. 3. It is clearly observed that instabilities arise within 1000 time steps for Schemes I, II and III 
while for scheme IV it starts to appear around 60,000 time steps. Thus, Scheme IV has better 
numerical stability as assessed in the eigenvalue analysis in the previous section. Since the number of 
time steps reflects the resolution in the frequency domain, Scheme IV should be used to analyze 
problems with high quality factor (which demands high frequency resolution, and hence more time 
steps in the time domain solution). 

 
5. Conclusion 

A framework for the analysis of the numerical stability of hybrid FE/FDTD algorithm is 
developed. The eigenvalue analysis of the resulting iteration matrix for different hybridization 
schemes reveals that Scheme IV has better stability properties than others. This was validated by the 
numerical experiments using the various hybridization strategies. The extension of the framework to 
3D is straight forward and is currently under investigation. 
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