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1 Introduction

Land-cover classification is one of the important research applications in SAR (Synthetic Aper-
ture Radar) remote sensing. Many classification algorithms have been proposed. Selection of
effective feature parameters for classification affects performance of the algorithm. For po-
larimetric SAR (POL-SAR) data, so many feature parameters have been proposed. Needless
to say, we can select pixel value in each image (Sum, Suv, Svv) as the feature parameter. In
addition, Polarimetric entropy and alpha angle (H, a)[1], three component scattering model
(Ps, Py, P,)[2], SDH decomposition (K, K4, K3)[3], and so forth, are the promising parame-
ters. One may think that classification performance will be improved as the number of feature
parameters are increased, however, that is not always true in general. We often obtain better
results with selecting optimal combination of several feature parameters.

We can find a few reports on optimum parameter selection[4]. However, suitable parameter
combination has not reported. Since the suitable combination of feature parameters may
depends on scene in general, parameter selection algorithm have been desired. In this report,
we evaluate effectiveness of the aforementioned feature parameters for land-cover classification
with POL-SAR images by using principal component analysis. This is the fundamental research
to develop optimal parameter selection scheme. Evaluation results of AIR-SAR data (San
Francisco images) are provided. These results show that we can obtain better classification
results with the optimal (or suitable) selection of several effective feature parameters.

2 POL-SAR Image Classification

A supervised maximum likelihood (ML) classifier is employed in this report. This classifier
seeks a best-match category using a supervised training data set. The maximum likelihood
determines the category based on the criterion,
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where 7 denotes the number of categories to be classified, and superscript H denotes complex
conjugate transpose. V; and &; are the covariance matrix and mean feature vector of the
category 1, respectively. A feature vector pertaining to a pixel is defined as
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where T' denotes transpose. The component of the vector, x, can be any feature parameter
concerning the pixel. The dimension of the vector IV is determined by the number of the used
parameters.

Generally, the performance ML estimation will be improved with increasing N. However,
since ranges of value in each POL-SAR feature parameter are diverse, suitable weighting (or
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scaling) of each parameter should be required. This may be highly scene dependent, therefore,
very difficult to be estimate. Therefore, we focus on optimal selection, or combination of
parameters for POL-SAR land-cover classification in this report.

3 Feature Parameters in POL-SAR Image

In this section, we briefly describe the property of each feature parameter employed here.

Each Polarization Component: Syy, Sgv, Svv

POL-SAR images are provided as 4 (or 3) images with combinations of transmitting and
receiving polarizations. S;; denotes the scattering parameters for i-polarization transmitting
and j-polarization receiving. The scattering property changes as the target shape and/or
distribution.

SDH Decomposition: (K, K4, Kp,)[3]

This is one of the famous scattering matrix decomposition schemes. Any scattering matrix
can be decomposed into sphere(K), diplane (or dihedral, Kj), and helix(K}) components,
where sphere components means scattering components which equal to the scattering matrix
for conductive sphere, and so on.

Three component scattering model: (Ps, Py, P,)[2] This is the model based decomposition
scheme. In this decomposition, physical scattering property of natural targets are assumed
(e.g. average of SyuSfyy = 0 for surface scatterer, where * denotes complex conjugate). The
parameter Ps, Py, and P, denotes contribution by surface, double bounce, and volume scatterer,
respectively.

Polarimetric entropy and alpha angle: (H, «)[1]

Polarimetric entropy (H) is the parameter to describe complexity of the scattering property.
This value becomes maximum (H = 1) for the complex (random) polarimetric scatterings, and
minimum (H = 0) for simple (rank 1) scatterings. « denotes polarization dependency of
the scatter, where a = 0°,45°,90° denotes plate, wire, and corner reflector type scattering,
respectively.

4 Principal Components Analysis

Since we adopt the supervised ML classifier, it is clear that the feature parameters having
different values in each training data set (class) are feasible. Ideally, the parameters that
yield 37, i izj zHz; — min are the best parameters in view of class discrimination. However,
this approach becomes difficult for large number of classes and parameters. This equation
also means that independency among each feature vector is improved when we choose optimal
parameters. Principal components analysis is the suitable technique for the evaluation.

In this analysis, we define overall training data sets as

X = [z, &9, -, &p)] (3)

where P denotes number of the selected classes. We normalize the matrix and derive principal
components and their contributions. Cumulative contribution of from # 1 to #j components

can be defined as
AL+ A+

M+ +-+Ap )
where \; denotes variance of the #i principal component. In view of class discrimination, it can
be preferable that the number of dominant principal components is equals to P. To evaluate
contribution of each feature parameter to the components, we also derive factor loadings,
which explain how the feature parameter relates to the components. We should select feature
parameters having strong contribution to the dominant principal components.
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5 Experimental Results

Classified results of San Francisco image obtained by AIR-SAR are shown in Fig.1. In this
classification, 4 categories (P = 4: residential, vegetation, seashore, and sea) are selected, and
extract almost 6,000 pixels from each area as the training data sets. Figure 1(a) shows the
classified image by using all 11 parameters (N = 11) denoted previous section. Contribution
of each principal components evaluated by the feature vector of training area is listed in Table
1. Although there are 11 parameters, there is only one dominant component and remaining
contributions are small. This can be considered that several feature parameters contain almost
the same feature. Since there exists 4 categories to be classified, it is desirable that the number
of dominant components becomes 4. Of course, it is not required necessarily, however, you may
easily understand that good classification performance can be achieved when feature vectors
span high-rank linear space.

Corresponding factor loadings for 3 dominant components are listed in Table 2. To en-
hance the second and third principal components, we should select the parameter(s) having
strong contribution to the component. According to the table, P; and H—« have the largest
contribution to #2 and #3 component, respectively. As the results, we can understand that
three component scattering model (Ps, Py, P,) and polarimetric entropy and alpha angle (H, «)
are the optimal choice. Other parameters will not be needed because of enough contribution
of Ps, P, to #1 component. The classified results by these two sets of feature parameters
(Ps, Py, P, and H,«, then N = 5) are shown in Fig.1(b). Contribution of each component is
listed in Table 1(b). Clearly, contribution of #2~#4 is enhanced. Classification accuracy is
also shown in each figure. We can obtain classification performance improvements (80.3%—
86.7%). In addition, this results show that feature vector rank reduction (N = 11 — 5) can be
realized with performance improvements, that reduces computational burden. Figure 1(c) and
Table 1(c) shows the classification results and corresponding principal components contribution
with polarization components and SDH decomposition. In this case, classification performance
is degraded since exist only one dominant component.

6 Conclusions

In this report, we apply the principal components analysis to the feature vectors in POL-SAR
land-cover classification, and show that the analysis is useful for discriminating contribution
of individual feature parameters. Experimental results show that classification by optimally
selected parameter realizes classification accuracy improvement as well as computational burden
reduction. Here, we only show the results of AIR-SAR data set. We have verified availability
of the analysis for PI-SAR data set. They will be presented in the symposium.
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I Residential [ Vegetation [ ] Seashore [l Sea

classiﬁc-atlon- accuracy 86.3 % classification accuracy 86.7 % classification accuracy 73.2 %

(a) Classified by 11 parameters (b) Classified by 5 parameters (c) Classified by 6 parameters
ISkl 1Syl 1Syl K Ky, K, (P, Py, P, Hoa) (Suuls 1Suvls ISvvl K Ky Ky )
P,P, P, Ha)

Fig.1 Classified results of San Francisco image obtained by AIR-SAR.

Table 1(a) Contribution of each  Table 1(b) Contribution of each Table 1(c) Contribution of each

principal components principal components principal components
in Fig. 1(a) in Fig. 1(b) in Fig. 1(c)
No. | contribution cumulative No. | contribution cumulative No. | contribution cumulative
contribution contribution contribution
1 88.3 % 88.3 % 1 79.7 % 79.7 % 1 96.3 % 96.3 %
2 7.5% 95.8 % 2 15.1 % 94.8 % 2 2.7% 99.0 %
3 2.7% 98.5 % 3 3.5% 98.3 % 3 0.8 % 99.8 %
4 1.0 % 99.5 % 4 1.7 % 100.0 % 4 0.2 % 100.0 %
5 0.0 % 100.0% 5 0.0 % 100.0 %
11 0.00 % 100.0 % 6 0.0 % 100.0 %

Table 2 Factor loadings of all 11 parameters
for dominant top 3 principal components

#1 Comp. #2 Comp #3 Comp

Si 0.540 0.583 0.531
Suy 0.812 0.350 0.132
Sy 0.689 0.593 0.324
Ps 0.735 0.505 0.380
P, 0.389 0.913 0.104
3 0.803 0.459 0.364

i 0.730 0.430 0.511
K, 0.569 0.633 0.384
K, 0.746 0.477 0.441
H 0.329 0.089 0.969

« 0.453 0.424 0.678
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