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1. Introduction

In the multipath communication scenario, it is needed to estimate the two dimensional angles and relative time
delays of each multi-path ray, such as source localization, the estimation of a parametric propagation channel, to
assist equalization and directive transmission in the downlink. Estimation of two dimensional angles and delays
also has applications in radar, and seismic exploration.

One aspect of the multipath estimation problem which has received little attention so far is the estimation of
three-dimensional parameter. Obviously, we can obtain 2-D angles and delays of the incoming signals in two
vertically located ULA using the methods proposed in [1-4]. While there are two disadvantages with that, on
one hand, the pairing of the 2-D angles and delays can’t be automatically determined; on the other hand, if two
or more rays have two close parameters simultaneously, the data covariance matrix turns ill-conditioned, and
those algorithms may not work properly in the methods suggested in [1-3]; TST-MUSIC proposed in [4] can
only solve the problem in the case of only one close parameter. In light of this setbacks, we present two low
complexity, yet hight accuracy algorithms, modified TST-MUSIC (MTST-MUSIC) and 3D JADE-ESPRIT to
estimate two dimensional angles and delays in rectangular planar array (RPA). The 3D JADE-ESPRIT algorithm
uses a 3D ESPRIT-like shift-invariance technique to separate and estimate the 2-D DOAs and delays, the basic
idea of MTST-MUSIC is to group and isolate the signal of each incoming ray using the space-time characteristics
of the multiray wireless channel.

2. Data Model

We consider a RPA shown in Fig.1. The array consists ofD×D elements. Assume that Q narrow band plane
waves impinge on the RPA of theD2 sensors from angular directions(γi, θi)(or (αi, βi)), where cos αi =
cos γi · cos θi, cos βi = cos(π/2 − θi) · cos γi .We assume that the sensor located at the origin isa11 , the nth
sensor along thex-aixs can be expressed asan1 and themth sensor along they-aixs can be expressed asa1m .
The output of theanm sensor is represented by

xnm(t) =
Q∑

i=1

si(t)e−j 2π
λ (n−1)d cos αie−j 2π

λ (m−1)d cos βi + nnm(t) (1)

where, si(t) is the ith emitter signal andnnm(t) denotes the additive noise ofnmth sensor, d denotes
inter-element distance. The sensor outputs are collected in the complex matrix , to form the array output

X(t) = A(α)diag[S(t)]AT (β) + N(t) (2)

where
X(t) = [xn1(t),xn2(t), · · · ,xnD(t)] (3)

denotes the output of the RPA,D × D−dimensional matrix.xni(t) is a D × 1 vector such thatxni(t) =
[x1i(t), · · · , xDi(t)]T . S(t) is a Q× 1 vector given by

S(t) = [s1(t), · · · , sQ(t)]T (4)

A(α) andA(β) denotes theD ×Q-dimensional array response matrix respectively such that

A(α) = [a(α1), · · · ,a(αQ)], A(β) = [a(β1), · · · ,a(βQ)] (5)

with a(α) and a(β) being two D × 1 complex vector characterized by an unknown parameterαk and βk

associated with thekth signal (k = 1, · · · , Q), it is given by

a(αi) = [1, e−j 2π
λ d cos αi , · · · , e−j 2π

λ (D−1)d cos αi ]T , a(βi) = [1, e−j 2π
λ d cos βi , · · · , e−j 2π

λ (D−1)d cos βi ]T (6)
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Fig. 1. Rectangular planar array geometry.

whereα andβ are the angle between the impinging waves andx-axis (AWX), y-axis (AWY) respectively.N(t)
is theD ×D complex noise matrix given by

N(t) = [Nn1(t),Nn2(t), · · · ,NnD(t)] (7)

whereNni(t) = [n1i(t), n2i(t), · · · , nDi(t)]T .
From (2), it can be obtained

Xvec(t) := vec(X(t)) = (A(β) ◦A(α))S(t) + vec(N(t)) (8)

We have used the general relation vec(A diag[b] C) = (CT ◦A)b as it applies to (2). In this paper, we
assume a TDMA wireless system with a known sequence, such as GSM, is our target application system. In
light of [4] we have

X(n)
t = A(β) ◦A(α)B(n)G(τ)T + N (9)

whereX(n)
t is the signal received during thenth time burst under a rateT/P , given by

X(n)
t = [x(n)

vec(t0),x
(n)
vec(t0 −

T

P
), · · ·x(n)

vec(t0 − (N − 1
P

)T )] (10)

G = [g(τ1) · · ·g(τQ)] is a matrix of dimensionQ × NP , with g(τi) is the convolution between the training
sequence and the time-shifted pulse-shaping function.B(n) = diag{β(n)

1 , · · · , β
(n)
Q } with β

(n)
i being the complex

fading amplitude of theith ray during thenth burst. We define theβ(n) := [β(n)
1 , · · · , β

(n)
Q ]T . It is assumed

that ‖a(αi)‖ = ‖a(βi)‖ = ‖g(τi)‖ = 1 for all α, β andτ , by adjusting power betweenA(α), A(β), G(τ) and
B(n) respectively. We suppose that the transmitter signal is a complex Gaussian random process and thus have

ε{B ·BH} = ε{β(n) · β(n)H} = diag(δ2
1 , · · · , δ2

Q) =: P (11)

Where superscript(·)T , (·)∗, and(·)H denotes matrix transpose, complex conjugate and Hermitian transpose
respectively.δ2

i is average signal power of rayi, ε(·) is statistical average.⊗ is Kronecker product,◦ is Khatri-
Rao product [5], which is a column-wise Kronecker produt:A ◦ B = [a1 ⊗ b1 a2 ⊗ b2 · · · ]. † is matrix
pseudo-inverse,Im is m×m identity matrix.

3. Proposed Algorithm

Note that (9) is different from the model in the 1-D DOA and delay estimation for different parameter
dimension. However we can modify the methods suggested in [1-4] to have joint 2-D DOA and delay estimation.

A. 3D JADE-ESPRIT Algorithm

In the frequency domain, if we carry out anNt-point discrete Fourier transform (DFT) on the rows of (9),
the resulting frequency domain representation ofX(n)

t is

X(n)
f = A(β) ◦A(α)B(n)V(τ)T · diag{g̃} (12)

whereV(τ) =: [v(τ1), · · · ,v(τQ)] in whichv(τk) = [1, υk, · · · , υNt−1
k ]T with υk = e−j 2π

Nt
τk ; g̃ = [g0(0), · · · , g0(Nt−

1)]T , with g0(k) denoting thekth element of the DFT ofST
t g(0). Nt is Nyquist rate. (12) can be shown

H(n) = X(n)
f · diag{g̃}−1 = A(β) ◦A(α)B(n)V(τ)T (13)

It is obtained thatvec(H(n)) = U(τ, β, α)β(n), whereU(τ, β, α) = V(τ) ◦A(β) ◦A(α), we have used the
general relationA ◦ (B ◦C) = A ◦B ◦C. Note thatV(τ) also possesses the rotational invariance structure.
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Obviously,U(τ, β, α) has a triple Vandermonde structure, as proposed in [1],E containing a basis of the column
span ofU can be estimated by taking the left singular vectors corresponding to the largestQ singular values
of vec(H(n)). Thus we haveE = UT, whereT is a square invertibleQ ×Q matrix. Define the following
selection matrices:

Jα = INt ⊗ ID ⊗ [ID−101], Jβ = INt ⊗ [ID−101]⊗ ID, Jτ = [INt−101]⊗ ID×D (14)

J′α = INt ⊗ ID ⊗ [01ID−1], J′β = INt ⊗ [01ID−1]⊗ ID, J′τ = [01INt−1]⊗ ID×D (15)

and we defineFα = JαU, and similarly for F′α,Fβ ,F′β ,Fτ ,F′τ , thus we can obtainF′α = FαΨ,F′β =
FβΦ,F′τ = FτΥ, whereΨ,Φ,Υ is shift invariance ofA(α),A(β),G(τ) respectively. Then let

Eα := JαE, Eβ := JβE, Eτ := JτE (16)

E′α := J′αE, E′β := J′βE, E′τ := J′τE (17)

These data matrices have the structure

Eα = FαT, Eβ = FβT, Eτ = FτT (18)

E′α = FαΨT, E′β = FβΦT, E′τ = FτΥT (19)

Finally, we can obtainE†αE′α = T−1ΨT,E†βE′β = T−1ΦT andE†τE
′
τ = T−1ΥT. This is a joint diagonaliza-

tion problem [2,3].

B. MTST-MUSIC Algorithm

The 3D JADE-ESPRIT takes advantage of the Vandermonde structure of the data covariance matrices, if two
or more rays have two close parameters simultaneously, this algorithm may not work properly. TST-MUSIC
algorithm only deals with the problem with one close parameter. In this section we present a novel MTST-
MUSIC to estimate 2-D DOA and delay. To simplify the algorithm description, we first assume that there are
two or more rays with close angleα and delay simultaneously and distinct angleβ. We define the covariance
matrix of X(n)

t asRτ from (9), expressed as

Rτ = ε{X(n)T
t X(n)∗

t } = G(τ)PGH(τ) + σ2
n · I (20)

By applying T-MUSIC to (20), it is obtained that the temporal filtering matricesUt
i = I− g(t̂i) · g(t̂i)H . To

simplify the algorithm description, it is assumed that there are only two estimatest̂i(i = 1, 2) of delay. As a
result, matrixXt

i = X(n)
t ·Ut

i can thus be generated, matrixXt
i comprises information of signals which have

close delay. Obviously we can obtain vec(Xt
i) = (UtT

i G(τ)) ◦ A(β) ◦ A(α)β(n) + vec(N ·Ut
i) and define

f1(Xt
i) := unvecD×(D×NP ){vec(Xt

i)}, thus we have

f1(Xt
i) = A(α)B(n){(UtT

i G(τ)) ◦A(β)}T + f1(N ·Ut
i) (21)

wheref1(N ·Ut
i) represent the noise term constructed fromN ·Ut

i in a similar way asf1(Xt
i) is obtained from

Xt
i. Similarly we also define the covariance matrix ofX(n)

t asRα , expressed as

Rα = ε{f1(Xt
i)f

H
1 (Xt

i)} = A(α)PAH(α) + σ2
n · I (22)

By applying S-MUSIC to (22), it is obtained that the spatial beamforming matricesUα
j = I−a(α̂j) ·a(α̂j)H ,

it is assumed that there are only two estimatesα̂j(j = 1, 2) of angleα. As a result, matrixXα
j = Uα

j · f1(Xt
i)

can thus be obtained. Similarly we define matrixf2(Xα
j ) = unvec(D×D)×PN{vec(Xα

j )}, thus have

f2(Xα
j ) = A(β) ◦ (Uα

j ·A(α))B(n)GT (τ)Ut
i + f2(Uα

j · f1(N ·Ut
i)) (23)

Wheref2(Xα
j ) comprises information of several signals which have close angleα. In (2), if we redefine the

X̃(t) as
X̃(t) = [x̃1m(t), x̃2m(t), · · · , x̃mD(t)] (24)

wherex̃jm(t) = [xj1(t), · · · , xjD(t)]T . Substituting (24) into (8) yields

vec(X̃(t)) = (A(α) ◦A(β))S(t) + vec(Ñ(t)) (25)

and from (23) we can obtain

f3(Xα
j ) = (Uα

j ·A(α)) ◦A(β)B(n)GT (τ)Ut
i + f3(Uα

j · f1(N ·Ut
i)) (26)
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Fig. 2. Comparison of the RMSE of angleα estimates based
on the 3D JADE-ESPRT, and the MTST-MUSIC algorithms.
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Fig. 3. Comparison of the RMSE of delay estimates based on
the 3D JADE-ESPRT, and the MTST-MUSIC algorithms.

The a column off3(Xα
j ) are construct from that off2(Xα

j ) in a similar way as vec(X̃(t)) is obtained from
vec(X(t)). Obviously from (26) we can obtain

f4(Xα
j ) = A(β)B(n){(UtT

i G(τ)) ◦ (Uα
j A(α))}T + f4(Uα

j · f1(N ·Ut
i)) (27)

wheref4(Xα
j ) is constructed fromf3(Xα

j ) in a similar way asf1(Xt
i) is obtained fromXt

i. Rβ expressed as

Rβ := ε{f4(Xα
j ) · fH

4 (Xα
j )} = A(β)PAH(β) + σ2 · I (28)

with the assumption that there are two or more rays with close angleα and delay simultaneously and distinct
angleβ, theRβ comprises information of signals with distinct angleβ and theβ can accurately estimated. so
angleα and delayτ are isolated and estimated.

4. Simulation Results

Some simulations are conducted in this section to verify the proposed methods. The sensor displacement
is taken to be half the wavelength of the signal waves. Three narrowband signals are transmitted (Q = 3),
the uncorrelated signal sources with identical powers while the additive noises are white Gaussian processes,
and received by a 36-elements RPA (D = 6). The received signalXt is sampled during 20 data bursts. The
oversampling factorP = 2, and the average fading amplitudes of the three rays are equal and normalized to
dB with randomly selected but constant fading phases. In the basic setup, we let theα andβ be [45◦, 17◦, 20◦]
and [70◦, 135◦, 72◦] respectively, and the propagation delays to be [0.90, 0.02, 0.08]T , whereT = 3.68µs is
the symbol period, the number of snapshots at each sensor isM = 1000.

In Fig.2-3 two algorithms are carried out for comparison of the root mean square error (RMSE), including
the 3D JADE-ESPRIT algorithm and modified TST-MUSIC algorithm. For each specific SNR, 300 Monte Carlo
trials are conduced. As we can observe from Fig.2-3 , the modified TST-MUSIC algorithm outperforms the 3D
JADE-ESPRIT algorithm.

5. Conclusion

We have presented two algorithms, 3D JADE-ESPRIT and modified TST-MUSIC, for joint 2-D angle and
delay estimation using rectangular planar array in this paper. 3D JADE-ESPRIT is poor in accuracy estimation,
while the modified TST-MUSIC outperforms 3D JADE-ESPRIT and the pairing of 2-D angles and delays is
automatically determined. Simulation results demonstrate the validity of the suggested algorithms.
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