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1. Introduction
In many practical signal processing applications, the objective is to estimate the direction-

of-arrival (DOA) from measured data. To this end, there have been several approaches to
such a problem, including the so-called ESPRIT algorithm [1]. Since its formal derivation in
1985, ESPRIT has been used for DOA estimation, harmonic analysis, frequency estimation,
delay estimation, and combinations thereof. ESPRIT has advantages over another widely used
multiple signal classification (MUSIC) [2] method for it reduces the computational burden of
MUSIC by exploiting the rotational invariance between two subarrays. But the performance of
ESPRIT is greatly affected by the signal-to-noise ratio (SNR), especially in low SNR scenario.
The estimation success ratio also decreases for correlated signals.

Subband-based signal processing is a technique of fascinating features. S. Rao and W.
A. Pealman proved in [3] that with subband decomposition, several superiorities, like lower
minimum prediction error, closer entropy rate to the source, whiter signals in the subband
than the fullband, could be obtained compared with the direct estimation on the fullband. To
conclude those advantages, different modes are isolated in the process of subband decomposition,
which inspire us to decorrelate the signals by decomposing them into several subbands. Two key
features of subband signals, named SNR amplification and spatial frequency spacing widening,
were given by A. Tkacenko and P. P. Vaidyanathan in [4]. Wavelets are non-ideal subband
filter banks and wavelet transform (WT) plays the role of binary decomposition of the source.
Wavelet packet transform (WPT) is a much detailed WT by decomposing both approximations
and details. Both WT and WTP have their successful applications in harmonic retrieval [5, 6].
Wavelet-based approaches for DOA estimation were suggested in [7] and [8], while both methods
failed to decompose the spatial spectrum in the details subband.

In this paper, we suggest a novel subband-based ESPRIT (SB-ESPRIT) algorithm for
DOA estimation. SB-ESPRIT begins with a subband decomposition of the measured data
matrix. After that, standard ESPRIT is used to estimate the parameters in selected subband.
The validity of ESPRIT in subband signals is proven by finding the rotational invariance between
two subarrays in each subband. Then the mapping method from subband frequency back to the
fullband one is given. The provided computer simulations confirm our proposed SB-ESPRIT
approach.
2. Formulation of the problem

In most digital situations, we consider a uniform linear array (ULA) with K isotropic
sensors spaced by the distance d, and there are D (D < K) narrowband plane waves centered
at frequency ω̃0, impinging from the directions θ1, θ2, · · · , θD. Locating the first sensor at the
origin, the received signal sampled at the i-th sensor can be expressed as

xk(n) =
D∑

i=1

si(n)e−jω̃0(k−1) sin θid/c + wk(n) (1)

In matrix form, we have
x(n) = As(n) + w(n) (2)

where x(n), s(n), and w(n) denotes respectively the K×1 received signal vector, D×1 wavefront
vector, and K × 1 additive noise vector. We define ωi = ω̃0 sin θid/c as the equivalent spatial
frequency of the i-th wavefront, the mixing matrix A ∈ CK×D can be expressed as A(ω) =
[a(ω1),a(ω2), · · · ,a(ωD)] ,where a(ωi) = [1, e−jωi , · · · , e−j(K−1)ωi ]T denotes the steering vector
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corresponding to the spatial frequency ωi, and superscript T denotes transpose. If we place the
sensors along the x-axis of the coordinate system, with its first sensor located at the origin, the
output snapshot of the k-th sensor can written by

x(k) =
D∑

i=1

sie−j(k−1)ωi + w(k) (3)

where si = |si|e−jφi is a factor to scale the complex signal e−j(k−1)ωi , the initial phase φi is
uniformly distributed over the interval [0, 2π). Suppose the signals are zero mean wide sense
stationary (WSS) process, and w(k) is a zero mean white Gauss noise (WGN) uncorrelated with
the signals, and have identical variances σ2 in each sensor. From the above assumptions, the
autocorrelation function of the k-th signal is given by

Rxx(k) =
D∑

i=1

Pie−j(k−1)ωi + Rww(k) =
D∑

i=1

Pie−j(k−1)ωi + σ2δ(k) (4)

where Pi := |si|2 denotes the power of the i-th signal.
To prevent aliasing of the spectrum, Shannon’s spatial sampling theorem must be satisfied,

i.e. max{ωi} = max{2π · sin θi · d/λ} ≤ ωs/2, here ωs = 2π is the sampling frequency and λ
denotes wavelength of the signal. By insuring d ≤ λ/2 in the array, the measured data from all
sensors can be taken as samples of the spatial signals.
3. The SB-ESPRIT

The idea of SB-ESPRIT is to filter the measured data into several subbands and then apply
ESPRIT algorithm to each subband. Subband decomposition is based on the ideal bandpass
filters, while it is not applicable for the infinite length of the filters. Non-ideal wavelet filters
are often used to have subband decomposition though there is overlapping between the highpass
filter and the low one. We notice that wavelet decomposition is a binary decomposition of
the approximation while it keeps the detail unprocessed. Inspired greatly by the works of C.
B. Lambrecht [5], we choose wavelet packet to decompose both the approximation and detail
in each level. For the convenience of analysis, we define two matrixes H and G to filter the
measured data of (2) into a high frequency subband and a low frequency subband, which are
formulated by

xh(n) = HAs(n) + wh(n), xg(n) = GAs(n) + wg(n) (5)
where H and G are Nf ×K filtering matrixes, here Nf = fix[(K + Nd)/2]− 1 with Nd denotes
the length of filter and fix[y] means rounds the elements of y to the nearest integers towards
zero. The filtered matrixes are named high frequency matrix xh(n) := Hx(n) and low frequency
matrix xg(n) := Gx(n). Thus we have two Nf × 1 matrixes xh(n) and xg(n) and each of them
can be used to compose two subarrays. Taking xh(n) for example, we choose its rows from 1 to
(Nf − 1) to form the ‘measured’ matrix x1

h(n) of the first subarray, and 2 to Nf to form x2
h(n)

of the second subarray.
To apply ESPRIT algorithm to each subband, it is important to exploit the rotational

invariance between these two subarrays. For simplicity, we choose Haar wavelets as the analysis
filters and suppose K is even and K/2 is integer. The 1-level highpass filtering matrix H is
given by

H =




J2 o2 · · · o2

o2 J2 · · · o2
...

...
. . .

...
o2 o2 · · · J2


 ∈ RK/2×K (6)

with J2 = [1/2, 1/2] and o2 = [0, 0].
Substituting (6) into the low frequency subband of (5) yields

xh(n) =




J2 o2 · · · o2

o2 J2 · · · o2
...

...
. . .

...
o2 o2 · · · J2







1 1 · · · 1
e−jω1 e−jω2 · · · e−jωD

e−j2ω1 e−j2ω2 · · · e−j2ωD

...
...

. . .
...

e−j(K−1)ω1 e−j(K−1)ω2 · · · e−j(K−1)ωD




s(n) + wh(n) (7)

which can be simplified as
xh(n) = Ãs(n) + wh(n) (8)
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where Ã = HA denotes the K/2×D subband mixing matrix
Ã =

[
ã1 ã2 · · · ãD

]
(9)

with ãi =
[
1 + e−jωi , e−j2ωi + e−j3ωi , · · · , e−j(K−2)ω1 + e−j(K−1)ω1

]T
.

Like the selection of subarrays in the original algorithm of ESPRIT, the first subarray is
composed of the sensors from 1 to (K/2 − 1) and the second subarray is from 2 to K/2. The
mixing matrixes Ã1 and Ã2 of two subarrays can then be related by a diagonal matrix Φ to
expressed as Ã2 = Ã1Φ. Here Φ is the rotational invariance in the subband signals, given by

Φ = diag{e−j2ω1 , e−j2ω3 , · · · , e−j2ωD} (10)
By exploiting the diagonal elements of Φ using standard ESPRIT, we can obtain the

spatial frequency ω̃i in the subbands without having to know the mixing matrix Ã1. So the
validity of SB-ESPRIT is shown with a 1-level Haar wavelet decomposition. It can also been
easily proven with an l-level any-type wavelet decomposition. It is interesting to notice that the
subband frequency is amplified in Φ, which accords with the superiority of frequency widening.

As we desire the fullband frequencies, we need to map the frequencies from subbands back
to the fullband. To an l-level Haar wavelet packet decomposition, we map the frequencies as
follows

ωfb =





ω̃l,m + (m− 1)πsgn(ω̃l,m)
2l

, m = 1, 3, 5, · · ·
ω̃l,m −mπsgn(ω̃l,m)

2l
, m = 2, 4, 6, · · ·

(11)

where sgn(ω̃l,m) denotes the sign of ω̃l,m.
Here we give the summary of the SB-ESPRIT algorithm based on TLS criterion

Step 1. Form the matrix X = [x(1),x(2), · · · ,x(N)] by taking N snapshots of model (2).
Step 2. Filter X with wavelet packet filters H and G to yield two matrixes Xh = HX and

Xg = GX.
Step 3. Determine the number of signals by applying the minimum description length (MDL)

criterion to the mother node X and its two children nodes Xh and Xg. Accept the children
nodes and goto Step 2 if there are no modes lost. Otherwise stop the decomposition at
the mother node.

Step 4. Prune the binary tree using the best bases method to find the optimal leaf nodes.
Step 5. Divide each leaf nodes into two subarrays and apply TLS-ESPRIT to estimate the

subband spatial frequency ω̃l,m.
Step 6. Map the subband frequency ω̃l,m back to the fullband frequency ωi,fb, i = 1, 2, · · · , D

using (11) and then the DOA’s from

θi = arcsin
{

ωi,fb · c
ω̃0 · d

}
= arcsin

{
ωi,fb · λ

d

}
(12)

4. Simulation Results
In this section, we give computer simulations to compare the SB-ESPRIT with standard

ESPRIT algorithm. Both simulations are carried out for a half wavelength (d = λ/2) spaced
ULA with K = 32 isotropic sensors. Four sources emitting narrowband signals with the same
power, and propagating in distinct directions with DOA’s 10◦, 20◦, 40◦, and 60◦ are considered.
The number of snapshots taken from the array is N = 100 and the Haar wavelet packets are
chosen as the subband decomposition filters. We use Monte-Carlo simulation method to have
100 runs of each example. In the first example, a very low SNR scenario is chosen to evaluate
the performance of SB-ESPRIT and ESPRIT in high power interference scenarios. Fig. 1 and
Fig. 2 illustrate the estimated DOA’s with the standard ESPRIT and SB-ESPRIT algorithm
for θ = 10◦, 20◦, 40◦, and 60◦ with SNR = −13 dB and 100 trial runs. We notice that the
estimates with SB-ESPRIT are closely distributed along the DOA’s, while those with ESPRIT
are not. Fig. 3 shows the resulting root mean square error (RMSE) of the estimated DOA’s
as a function of SNR. SB-ESPRIT algorithm outperforms ESPRIT especially in low SNR for
its ability of SNR amplification in the subbands. The second example depicts the decorrelation
ability of SB-ESPRIT algorithm compared with the standard ESPRIT, as shown in Fig. 4. The
RMSE is greatly decreased with the growth of SNR.
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Fig. 1: Estimates with the standard ESPRIT algorithm
for θ = 10◦, 20◦, 40◦, and 60◦ with SNR = −13 dB and
100 trial runs.
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Fig. 2: Estimates with the SB-ESPRIT algorithm for
θ = 10◦, 20◦, 40◦, and 60◦ with SNR = −13 dB and 100
trial runs.
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Fig. 3: RMSE of the estimated DOA’s as a function of
SNR for θ = 10◦, 20◦, 40◦, and 60◦ (cross line - ESPRIT,
diamond line - SB-ESPRIT).
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Fig. 4: RMSE of the estimated DOA’s as a function of
SNR for two uncorrelated DOA’s 20◦ and 60◦, and two
correlated DOA’s 10◦ and 40◦ (cross line - ESPRIT,
diamond line - SB-ESPRIT)

5. Concluding remarks
A novel subband-based ESPRIT (SB-ESPRIT) algorithm has been proposed in this paper.

SB-ESPRIT estimates the spatial frequencies by decomposing the signal into several subbands.
Rotational invariance in the subbands is proven and then the subband frequencies are estimated
using ESPRIT approach. Due to the frequency spacing widening feature, a mapping method
from subband to the fullband is formulated in (11). Simulation results show that SB-ESPRIT
outperforms ESPRIT, especially in low SNR scenario. The decorrelation ability of SB-ESPRIT
relies on the decomposition level of subband, and is better than ESPRIT to some extent. Sim-
ulation results demonstrate the validity of the suggested approach.
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