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1. Introduction 
Various wireless communication technologies have recently appeared for personal networks and they are causing 
overcrowding on the limited frequency resources for personal wireless communication. There is even a trend to 
share frequency resources without licenses as “Commons.” However, different communication systems interfere 
with each other in the same frequency bands or channels. For example, in the 2.4-GHz ISM band, microwave 
ovens and Bluetooth interfere with wireless LAN standard IEEE802.11b/g [1]. In the 5.2-GHz band, ultra 
wideband (UWB: 3.1-10.6 GHz) is assumed to interfere with IEEE802.11a [2]. It is impossible to design an 
interference-free system by standardization, because new technologies quickly emerge. Moreover, intersymbol 
interference (ISI) and co-channel interference have increased because of the recent coverage-expansion and rapid 
growth in the number of subscribers in urban areas. Furthermore, many illegal radio waves may emerge as 
software defined radio techniques become popular [3]. Thus, for user terminals, it has become much more 
important to suppress such kinds of interference at reception and to avoid interfering with other stations at 
transmission. Interference-tolerant technologies thus facilitate high-data-rate and high-quality transmission. 
  The adaptive array antenna (AAA) is one of the most promising techniques for overcoming interference 
without any pre-knowledge of the signal nature, direction of arrival (DOA), or time delay of arrival [4]. AAAs 
are classified into two types: digital and analogue processing types. Digital ones need as many RF (radio 
frequency) front-ends and A/D converters as antenna branches, so it is difficult to use them for terminals in terms 
of power consumption, size, and cost. Analogue ones have array processing in the RF part, so they are suitable 
for terminals [5]. The RF-AAAs have already been developed for satellite communications, military radars, and 
aerospace applications [5]-[7]. However, there has recently been a shift in its use towards personal 
communications [5], [8]-[10]. For example, an RF-AAA has been proposed for mitigating the ISI in high-speed 
wireless LANs (WLANs) [8], and another RF-AAA has been put to commercial use in WLAN access points for 
beam-forming towards terminals [9]. Furthermore, recent advances in monolithic microwave integrated circuits 
and micro-electromechanical system technologies for variable-gain low-noise amplifiers and phase shifters have 
facilitated the implementation of RF-AAA into terminals [11][12]. 

Electronically steerable passive array radiator (ESPAR) antenna was recently put into practical use as an 
analogue adaptive array antenna for ad-hoc terminals by Dr. Ohira’s research group in Japan [5], after being 
originally investigated for military radar in the US [6], [7]. The ESPAR antenna is aerial beamformer using 
space-coupled parasites with varactor termination. Its beam-steering effect has been demonstrated for ad-hoc 
networking [13] and its null-steering effect for suppressing interference has been investigated by computer 
simulations [14], [15], but it has not yet been demonstrated to the best of our knowledge. 

This paper demonstrates null-steering of the ESPAR antenna to suppress interference for wireless LAN 
(WLAN) system in the 2.4-GHz band. The WLAN standards IEEE802.11g and IEEE802.11b are used for 
transmission and interference signals respectively. Steepest gradient algorithm is used to adjust varactors in the 
ESPAR antenna [16]. The effect of the null-forming is quantified using the three-dimensional (3-D) directional 
pattern and bit error rate (BER) measurement. The results show that the ESPAR antenna forms a deep null with 
respect to the interference and thus significantly improves the BER performance.  

2. Experimental System 
Figure 1 shows a block diagram of the experimental system, which consists of two transmitters, an RF-AAA, a 
receiver, and digital signal processing (DSP) systems on a PC, and a bias supply for controlling variable devices 
in the RF-AAA. 
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2.1  Transmitters 
Two signal generators (Agilent E4438C) are employed as transmitters. One is for the desired signal and the other 
acts as an interference source. Commercially available sleeve dipole antennas are used for both transmitter 
antennas. 
2.2  Receiver  
In the receiver (VSA 89641A), RF-AAA output signal is down-converted to an intermediate frequency (IF) 
signal and gain-controlled to an appropriate level with a gain-controlled amplifier. The gain-controlled IF signal 
is quasi-coherently detected by a quadrature demodulator. The quasi-coherently detected signal is passed through 
root roll-off filters and digitized by an A/D converter. The receiver finally outputs digital data bursts into the PC 
through IEEE 1394 cable according to a trigger signal for data acquisition. Carrier and frame synchronizations 
are hard-wired.  
2.3  DSP systems on PC  
BER for the data bursts from the receiver is measured by Agilent Ptolemy simulator on the PC. Agilent VEE Pro 
executes an adaptive control algorithm for the RF-AAA using a long preamble part of the received data burst and 
controls the bias supply through GP-IB. By using this experimental system, we can test various types of 
RF-AAA. Real-time online processing is required for the RF-AAA unlike offline processing for DSP-type 
AAAs, because the receiver receives only one output signal after RF-AAA processing and adaptive control is 
required in real time through bursts stream.  

Fig. 1 Experimental system.
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2.4 Control criterion and timing chart 
We use steepest gradient algorithm to control the RF-AAA, in which a cost function is calculated according to 
the cross-correlation coefficient, which is expressed as [16]: 
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where y(n) and r(n) are a long preamble pattern of the received signal and a reference signal, respectively, at 
time n. Figure 2 shows the timing chart of data flow, bias, acquisition trigger, and the calculation of the cost 
function in the adaptive control. The bias voltage for the m-th variable device is perturbed (+∆vm) and the 
correlation coefficients (ρm) are calculated for all variable devices in each iteration. Varctor number m 
corresponds to parasitic elements number (m = 1, 2, ⋅⋅⋅, M). Then, the bias vector is updated using a gradient 
vector of the correlation coefficients ∇ρn and a step size parameter µ as follows. 

nµnn ρvv ∇+=+ )()1(  
2.5 BER measurement 
The experiment system measures BER by comparing receive and reference data bursts in Agilent ADS Ptolemy 
simulator implemented on the PC. The Ptolemy simulator measures the BER for each block of bursts obtained 
from the receiver with the acquisition trigger, shown in Fig. 2. Option 002 (32M samples) for the transmitter 
(SG E4438C) allows the experimental system to measure BER accurately. Here, for 18-Mbps QPSK, the 
maximum number of transmitted bursts is 847 when the over-sampling rate is four and the amount of data per 
burst is 1000 bytes. Then, 6,776,000 bits (= 1000 bytes × 8 bits × 847 bursts) is the maximum number of 
transmitted bits, and that is more than enough to measure BER reliably on the order of 10-4. 
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Fig. 2 Timing chart of data flow, bias, acquisition trigger, and calculation of cost function. 

3. Experiment 
Table 2 lists parameters for the experiment. Figure 3 shows a manufactured ESPAR antenna in which a feeding 
port is located in center and surrounded by six parasitic elements (M=6) with varactor termination. 
3.1 Experimental parameters 
The transmitted signal is IEEE802.11g with 18-Mbps QPSK and the interference signal is IEEE802.11b with 
11-Mbps CCK. The signal-to-interference ratio (SIR) was set to 0dB at 99.9% of the bandwidth of the 
transmitted signal. The experiment was carried out in an anechoic chamber and only downlink transmission was 
tested. The transmitting and receiving antennas were placed at equal heights. The DOAs of the transmitted signal 
and interference were 0° and 120°, respectively. 

 
 
 
 
 
 
 

 
3.2 Array directional pattern 

Table 2  Experimental Parameters 

Receive antenna ESPAR antenna 
Frequency 2.484GHz 
Signal IEEE802.11g, 18-Mbps QPSK 
Interference IEEE802.11b, 11-Mbps CCK 
DOA Signal: φ=0° 

Interference: φ=120° 
Input SIR 0 dB (@99.9% of bandwidth) 
 

Fig. 3 ESPAR antenna. 

Figures 4 and 5 show array directional patterns measured in 3-D and in the horizontal plane (X-Y plane in Fig. 
4) respectively, after convergence of the adaptive control. A deep null was observed in the direction of 
interference, φ=120°. Antenna gain was +0.7 dBi in the direction of the desired signal (φ=0°) and −36 dBi in the 
direction of the interference (at φ=120°), so the output SIR was 36.7 dB. The result without bias also shown in 
Fig. 5 is nearly omni-directional and its gain is −0.7dBi in the direction of the desired signal (φ=0°). Therefore, 
the gain in the direction of the desired signal was 1.4 dB higher after adaptive control. The gain (+0.7 dBi) of the 
ESPAR antenna in the direction of the desired signal (φ=0°) was not maximum because of some antenna 
configuration impairment etc. 

Fig.4 Array directional pattern in 3-D. 
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Fig. 5 Array directional pattern in X-Y plane.
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3.3 BER performance 
Figure 6 shows BER performance for the ESPAR antenna with and without the interference. To evaluate the 
effect of the ESPAR antenna without including the receiver unit, we measured the BER while varying the output 
power of the transmitter. First, the BER was measured without the interference. The BER result without control 
showed a similar tendency to that obtained by theoretical calculation assuming a 2.14-dBi standard antenna. This 
confirmed that the experimental system was working correctly. Degradation of the BER compared to the theory 
is mainly due to the antenna gain in the direction of the desired signal (i.e., 0.7 − 2.14 = − 1.44 dB). Second, 
BER was measured with the interference. Without control, the BER was 0.5. With control, it was significantly 
improved and was almost the same as that without interference. 

4. Conclusion  
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Fig. 6 BER performance. 

We developed an adaptive control system for RF adaptive array 
antennas and a BER measurement system in WLAN 
transmission. We manufactured an ESPAR antenna for the 
2.4-GHz band. The transmitting signal was IEEE802.11g and 
the interference signal was IEEE802.11b. The measured array 
directional pattern showed that the ESPAR antenna output SIR 
was improved by about 37 dB by null-forming when input SIR 
was set to 0 dB. Consequently, the transmitted bits error 
performance was significantly improved and almost agreed with 
the case without interference.  
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