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1. Introduction
In signal detection, one is interested in the problem of detection of a given radar signal s

which is a complex vector in the presence of noise in transmission. The actual observed data Y
may be a pure noise vector n or the signal s plus a noise vector n. It is assumed that the noise
follows a complex multivariate normal distribution with mean 0 and covariance matrix Σ.
Statistically, the model can be described as Y = s + n where s is a specific signal and n is a noise
random vector. The goal is to test the null hypothesis that Y = n versus the alternative hypothesis
that Y = s + n. Reed, Mallett and Brennan (1974) discussed an adaptive procedure for the above
detection problem in which two sets of input data are used, which are called the primary and
secondary data. A radar receives primary data 0Y  which may or may not contain a signal, and
secondary data which are assumed to contain only noise, independent of and statistically identical
to the noise components of the primary data. The goal is to test s:H versus :H == µµ 10 0  where
µ is the population mean of 0Y . Kelly (1986) used the likelihood ratio principle to derive a test
statistic for the above hypothesis testing problem.

Chen and Wicks (1999) proposed a selection procedure which compares the covariance
matrices of the secondary data with that of the primary data. It is used to identify and eliminate
those observations that have different covariance structure from the secondary data. As described
in Chen and Wicks (1999), this procedure can be applied prior to the step of estimating the
covariance matrix of the secondary data in Kelly (1986).

2. The Selection Procedure
Let ),(CN~Y p Σµ0  denote the primary data which is received by a receiver and is to be

tested for a specific signal s where s ia a known vector.  Let ),(CN~Y,...,Y,Y pn Σ021  be the

secondary data which is to be used to estimate the unknown covariance matrix Σ. The random
vector 0Y  is independent of the secondary data. Let S denote n times the sample covariance
matrix of the secondary data sample nY,...Y,Y 21 . Our goal is to test

(2.1)                               s:H     versus    :H == µµ 10 0 .

Kelly’s likelihood ratio test statistic for (2.1) can be written as
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The null hypothesis is rejected for large observed η. It was shown in Kelly (1986) that
under 0H , )pn ,(Beta~ 11 +−η , a Beta distribution with parameters 1 and n – p + 1.
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Following Reed, Mallett, and Brennan (1974)’s structure of radar data, Kelly’s test also
assumes an i. i. d. sample nY,...Y,Y 21  for the secondary data and an independently distributed

primary data 0Y . Let k,...,, πππ 21  represent k p-variate complex normal populations
),(CN iip Σµ , i = 1, 2, ..., k , and let 0π  be a control p-variate complex normal

population ),(CN p 00 Σµ . Those k populations are the resources of the k cells which may or may

not have the same or similar covariance structures as the control population π0  from which the
secondary data are taken. Here “similarity” is defined in (2.3) and (2.4) and the paragraph after
(2.4) later in this section. Thus, from each of the k experimental populations, only one
observation is taken, and from the control population, n observations are taken. We assume that

iµ = 0, i = 0, 1, 2, ..., k since the k experimental populations are the cells which are assumed to

have zero mean. Let p,i,i,i ... λλλ ≥≥≥ 21 > 0 denote the ordered eigenvalues of 1
0
−ΣΣ i . We define

the two disjoint and exhaustive subsets, ΩG and ΩB, of the set },...,,{ kπππ 21=Ω , by using a pair
of distance functions d1 and d2 defined as follows:
(2.3)                              ),(d i 01 ΣΣ = 1,iλ ; ),(d i 02 ΣΣ = p,iλ

(2.4)                  , ,}),(d  or ),(d|{ BG
*
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*

iB Ω−Ω=Ω≤ΣΣΣΣ≤=Ω 101022 δδπ

where **
21 δδ <  are pre-assigned positive real numbers which are used to define similar and

dissimilar populations. A population is considered similar to a control population when the
distance measures are close to unity. Our goal is to separate the populations obtained from the
guard cells into two disjoint subsets, BG S and S . The separation is correct if GGS Ω⊂ , meaning
that all populations included in selected subset GS  have similar covariance structure as the
control population. We require a procedure R that will satisfy the probability requirement that
Pr(the seperation is correct| R) = Pr(CS| R) ≥ P*, where P* satisfies 2-k < P* < 1.

The procedure R  defined in Chen and Wicks (1999) is as follows.

Procedure R: For each population iπ  ( i = 1, 2, ..., k), we first compute n/)xSx(T i
H

ii
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where 'ix s are the data vectors from experimental cells, H
ix is the conjugate transpose of ix ,

and S  is the sample covariance matrix associated with population 0π . Then we partition the set
of populations },...,,{ kπππ 21=Ω  into two subsets BG S and S . The subset GS  consists of those

populations iπ  with dTc i ≤≤  where c and d are chosen such that the probability requirement

P(CS) ≥ P* is satisfied and BS = Ω - GS .
To implement the procedure with a pre-determined probability requirement P*, Chen and

Wicks (1999) have shown that constants c and d have to satisfy the following integral equation:
(2.5)
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where )pn(,pF 122 +−  is the distribution function of an F distribution with 2p and 2(n-p+1)
degrees of freedom. We also define T0 ≡ 0 and Tk+1 ≡ 0.

3. Simulation Study and An Example
Example:  Five test (or guard) cells are to be examined and to be compared with a sample of
secondary cells. Each cell iπ  is represented by a 20 × 1 random vector ix  from a multivariate
complex normal distribution with mean 0 and covariance matrix iΣ . The covariance matrix of



the secondary cells is denoted by 0Σ .  The five test cells come from normal populations with
covariance matrices iΣ  such that

1
01
−ΣΣ  = diag (2.8, 6.7, .06, .05, .08, .07, .06, .05, 1.68, .09, 11.7, 9.6, .05, .08, .07, .06, .05, .08,

.07, .06);
1

02
−ΣΣ  = diag (.1,  .1, …, .1);
1

03
−ΣΣ = diag (1.2, 2.5, 3.1, .8, 2.3, 5.4, 3, 2.9, 6.1, 3.3, 5.3, .5, .9, 7.3, 1.7, 5.5, 2.3, 3.1, 6.4, 5.5);

1
04
−ΣΣ  = I; 1

05
−ΣΣ = diag (10, 10, …, 10).

Suppose we want to eliminate the test cell iπ  if either the largest eigenvalue of  1
0
−ΣΣi  is

smaller than or equal to *
1δ  = .1 or the smallest eigenvalue of 1

0
−ΣΣi  is larger than or equal to *

2δ
= 10. Then by choosing c = .2 and d = 5, we find from a computing algorithm for (2.5), for the

case k = 5, p = 20, *
1δ /c = ½, and *

2δ /d = 2, that the required sample size is n = 39 for the
secondary data to achieve P* = .90. We simulated 100 trials of ix  ( i = 1, …, 5) and S from the
multivariate complex normal populations with mean 0 and with respective covariance matrices
satisfying the above conditions. Then for each trial, we calculate the test statistic

n/xSxT i
H
ii

1−= . The results are plotted in Figure 1 at the end of the paper. From the definition

of Procedure R given in Section 2, Cell iπ  is retained if  .2 < iT  < 5. It is clear from the figure
that Cell 4 is always retained. Cell 2 and Cell 5 are always eliminated. Cell 1 and Cell 3 are
retained most of the times. Notice that Cell 4 is a perfect cell while Cell 1 and Cell 3 are both
considered good cells.
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Fig 1: 100 trials of T for 5 test cells x and a sample covariance S from n=39 secondary cells
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In our next simulation illustrations, we show, in Figures 2 to Figure 5, the probability of
the false alarm (P(FA)) and the probability of the detection (P(D)) when Kelly ’s adaptive
detection algorithm is applied to three different data sets. The first data set is the perfect data set
where all the observations in the secondary data are simulated from the same multivariate
complex normal distribution as the primary data. The second data set is the contaminated data set



where the secondary data includes some observations that were obtained from simulation of
various multivariate complex normal distributions whose covariance matrices are significantly
different from the covariance matrix of the primary data. The third data set is the screened data
set which consists of those observations that were originally in the contaminated data set and
were retained in the secondary data after our procedure R has been applied. We consider the
following cases: n, the sample size of the secondary data, = 25, …, 50; p = 20; and s = (.5, ….,
.5)* and (1, …, 1) *. The level of significance is set at .05 for all the cases considered. In Figures
2-5, the ‘o’’s are for the contaminated data set. The ‘x’s are for the perfect data set, and the ‘+’’s
are for the screened data set. It is clear from the illustrations that Kelly’s algorithm does not
provide a constant false alarm rate (CFAR) for the contaminated data set and it always gives
CFAR for the perfect data set and screened data set.

References

Chen, P. and Wicks, M. C. (1999) Identifying Non-homogenous Multivariate Normal
Observations. Technical Report. Submitted for publication.

Kelly, E. J. (1986). An Adaptive Detection Algorithm. IEEE Transactions on Aerospace &
Electronic Systems, vol. 22, #1, 115-127.

Reed, I. S., Mallett, J. D., and Brennan, L. E. (1974). Rapid Convergence In Adaptive Arrays,
IEEE Transactions on Aerospace & Electronic Systems, vol. 10, #6, 853-863.




