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1.  Introduction  

At prediction of radiowave attenuation on terrestrial paths with irregular profiles is widely used 
the model of number successive absorbing knife-edge obstacles[1-6]. In the earlier paper concerning this 
problem it were suggested heuristic methods. Only in [3] successive using of Fresnel-Kirchoff theory for 
double diffraction was considered. More recently computation of multiple diffraction integral was 
introduced [5,7-9]. 

Fresnel-Kirchoff diffraction theory is used in all this papers. The surface of integration in 
corresponding  integrals consist of Huyghens’s sources in the plane of each obstacles.  

It is interesting to get diffraction field as boundary wave, successively scattered by the edges of 
obstacles. Element of edge of each obstacle can be obviously called as Young’s source. 

The purpose of the present paper is to generalize the Maggi-Rubinowicz technique to the case 
of multiple diffraction. 

 
2.  Theory 

Figure 1 shows the geometry associated with the multiple knife-edge diffraction.        
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Fig. 1  Geometry of the problem 

Between a point source O situated at the origin of cartesian  coordinates and point of 
observation P(0, HN+1,d1+d2+...+dN+1) N perfectly absorbing knife-edge obstacles perpendicularly to z 
axis are placed (Fig. 1). Edge of obstacles has coordinate y=Hj. Assuming Hj<<dj,dj+1 (j=1,...,N) i.e. 
small angles diffraction is considered. Lets edge’s element of jth obstacles to be dlj. It is necessary to 
find field from the source on an arbitrary element dl2. For this purpose connect the point O and dl2 by 
straight line. Its intersection with plane x1y1 contains the origins of polar (ρ,ϕ) coordinate system(Fig. 2). 
Using Fresnel-Kirchoff diffraction formula the field dE2 on the element dl2 reradiated by Hyughens’s 
sources of sector dϕ can be found as 
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By means of usual Fresnel approximation one can find  
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 and as usual, medium of propagation is considered as slightly absorbing. It is 

evident from Fig. 2 that  
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and (2) becomes  
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where in exponential factor the following relationship is used: 
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So we obtain the field of Young’s source dl1 due to the incidence 
wave E1=exp(ikr1)/r1 on a diffraction edge. Comparison of expression (4) with known result for 
boundary wave [10,11] shows agreement between them at small angels of diffraction.  

Equation (4) may be written as  
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Here dD1 is elementary coefficient of diffraction. The element dl2 reradiates the spherical wave and (5) 
is presented in GTD format with  
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Repeating the process and performing integration over all dlj (j=1,2,...,N) one obtains  
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. After introducing coordinate system (xj, yj) in the 

plane of jth screen with origin on z axis it can be written 
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   Fig. 2. To calculation of elementary 
boundary wave 



where Rj is the distance between (j-1)th and jth edges.  
Changing variables of integration 
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and using (7) we get  
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Expression (9) is obtained from the assumption that edge of each obstacle shadows the edge of 

next one. When θj<0 then G( L EM M M+ −�
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�a H[S� �πρ , or in general case 
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where χ - Heaviside function. 
Let θj<0, the (9) becomes  
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where ( 31
M
+�� �  is multiple integral of order N-1 without integration on variable tj and it must be 

replaced dj→dj+dj+1, dj+1→dj+dj+1. 
 

3. Calculation. 
There are various techniques of multiple integrals calculation. For instance in [7,8] amplitude 

and phase of integrand are approximated by the functions making multiple integral computable. In the 
[5] multiple integral was expanded in series of terms involving functions known as repeated integral of 
the error function. Integrals (9) and (10) can be estimated by method of stationary phase for multiples 
integrals [12]. 

Following [5] (9) can be represented as  
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n=2m it may be found that  
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 - Fresnel integral. 

Results of calculation by means of formula (11) for the case of double diffraction shows good 
agreement (within 0.5 dB) with rigorous results [3]. 
 
4.  Conclusion 

In this paper by introducing elementary diffraction coefficient and using method of GTD 
generalization of Maggi-Rubinowicz theory for multiple diffraction is performed. Solution is obtained 
as multiple line integral corresponding to the edges of obstacles. Such integral can be transformed into a 
series representation which is amenable to computer implementation. 
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