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1. Abstract 
The special features of dielectrometry monitoring of heterogeneous materials and medium are 

discussed. An electrodynamical model for primary measuring converter in circular waveguides are 
considered. The results of investigation  of characteristics of regular circular waveguide with discrete 
layered filler are presented. Presented results may be used for measuring of electrophysical parameters 
of materials and for monitoring of constituent elements of fluid medium. 
 
2. Introduction 

In our paper the problems of the electromagnetic wave propagation in the multilayer 
waveguides are discussed. A great number of investigators presented the analysis of the problem when 
the waveguide had two or three layer. We worked out the mathematical model for electromagnetic 
wave propagation in the waveguide with the arbitrary number (N) of the layers. 

 
3.The mathematical model 

For the analysis a multilayered regular circular waveguide has been chosen. The number N of 
internal dielectric layers is given arbitrary. Let us ir  — the external radius of the layer with number i, 

aR  — radius of the waveguide. The external waveguide wall is perfectly conductive screen. 

In general case dielectric and magnetic permeabilities of iε  and iµ  of the layer with number i 

are complex tensors of the second rank. Let us supposed that external magnetic field is applied along 
azimuthal ϕ -axis. In this case the tensors ii µε ,  should be written as: 
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The solution of Maxwell equations is carried out by Fourier’s method in a cylindrical coordinate 
system. The dependence of the field’s components on time and on coordinates for regular waveguides 
is chosen as: 

                                          ( )[ ]zkntjHE Γ++ 0exp~, ϕω ,                                                     (2) 

where ω — circular frequency, n — number of field variations in azimuth direction, Γ — spreading 

constant normalized on the wave number of free space k0 , 1−=j  — imaginary unity. 
We analyze the azimuth and longitudinal field components with the help of Maxwell equations in the 
form of the first order system of the four differential equations. 
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The stroke means a derivative along normalized radial coordinate rk0=ρ . Equation (3) repre-

sents a shortened record of wave equation system when indexes m and e at field components and coef-

ficients are omitted, in this case is supposed that 
emme ,,~ Ψ=Ψ . 

The radial components of the electromagnetic field may be written as: 
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The relation ship (3) shows that the waveguide under consideration has the natural waves of the 
hybrid type. When n = 0 the system of the natural waves consists of the independent waves of the 
electric and magnetic type. 

We transpose the equation (3) to the system of the two wave equations for the longitude electric 
and magnetic components. 
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The transverse components are connected with the longitude components and its derivatives: 
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The particular solution of the system (5) can be written as: 
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where ikA λ,  are the unknown values. 

Let us substitute the relationship (10) to the system (5). As a result we obtain the system of the 
algebraical equations for the coefficients kA . 
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where 0; =+= kk Akλν  for 0<k . 

Let us suppose that 00 ≠A . When 0=k  we obtain the equation for determining the unknown 

degrees λ : 

                                                        ( ) 0~~~ 24 =+++− cceecc λλ                                            (12) 
The equation (12) has four solutions: 
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It is possible that the values iλ  are equal or its difference is the integer value. In this case the 

general solutions may be obtained by means of the limit transitions. Now let us consider that the solu-
tions iλ  are different and its difference is not the integer value. In this case the fundamental solutions 

system consists of the four particular solutions of the wave equation (5). The general solution of sys-
tem (5) is: 
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where iC — integration constants. These constants are defined with the help of the boundary condi-

tions. 
As a result, we obtain the system of the four algebraical equations: 
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where ϕξ ,z= . 
The relationship (15) may be simplified with the help of the boundary conditions on the perfectly con-
ductive wall of the waveguide. In this case the field components are presented as a linear combination 
with two constants NC ,1  and NC ,2 , where N — the number of the external layer. As a result, we ob-

tain: 
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where 1−Nρ  — is radius of the layer with number N-1; 

Ni ,,ξΦ  — is the tangential components of electric and magnetic field in the internal layer. 

Expressions at the coefficients Ci,k form a rectangular matrix with the elements 
)61;41( , ## == kja kj , with which iterative transformations are carried out. 
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where q=1,2,3,4; p=1,…6-q; j=1,2,3,4. 
As a result, field components in the layer with number p = N-1 depends on two constants 

NC ,1 , NC ,2 . These constants are defined for layer with number N. 

The approach discussed combines the algorithm of linear algebra with a rigorous solution of 
boundary electrodynamics problem for arbitrary layer’s number. This method removes the necessity in 
analytical presentation of the dispersion equation. 

The algorithmic (implicit) way of forming the dispersion equation above was checked on multi-
layer gyrotropic waveguide structures [1] with the azimuthal magnetization. The results of the simula-
tion are in the good agreement with result of [2]. 

Numerical solution of the dispersion equation, which is given in the implicit form, gives good 
results in practical calculations. However, there are a few problems when using this algorithm in a 
broad frequency range, and in case of considerable changes in material characteristics of waveguide 
system layers. Solution branches for adjacent types of oscillations are on the complex plane in close 
proximity to each other or intersect with the inversion of wave types. In this case, in the course of nu-
merical analysis of the dispersion equation, the change is possible from the solution related to one type 
of oscillations. 

To localize solutions related to the type of waves being studied, traditional ways of the nu-
merical analysis of the dispersion equation were complemented with the argument principle. 

This method enables to find the number of transcendental equation roots, which get inside the 
closed loop, and also to obtain algebraic relations for defining them. The combination of the argument 
principle with the extrapolation prediction of dispersion characteristic enables to determine optimal 
dimensions of the integration loop, and in doing so to realize the selection of solutions related to the 
type of oscillations investigated. 
4. Obtained results 

Developed algorithms of rigorous solution of electrodynamics problem for defining complex 
propagation constants were used to analyze potentialities of applying complex waveguide structures as 
converters for measuring electrophysical properties of materials. 



 
We construct the measuring converter in 

multilayer circular waveguide [3,4].  
In order to converter does not distort 

flood’s structure, the first layer’s diameter has 
been given as equal to the pipeline diameter.  

The converter may be used for 
measuring in the wide frequency range and 
different values dielectric permeability (from 1 
to 100). Fig. 1 shows imaginary part of 
dielectric permeability of the investigated 
material. 
The value ( )min00 )()( εΓ ′′−Γ ′′=∆Γ skk  

defines integral converter’s sensitivity. One 
can see that the presented mathematical model 
may be used as a base for investigation of the 
electromagnetic field integration with different 
materials and for the construction of the 
different microwave devices. 
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