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INTRODUCTION 

The electromagnetic modeling of large finite arrays as well as the scattering by finite periodic structures is an 
important topic for a large variety of engineering applications. Recently a new method, referred to as Truncated Floquet 
Wave Full-Wave (T(FW)²), has been proposed [1] [2], based on Floquet waves (FWs) diffraction for semi-infinite 
periodic structures [3]-[6]. This method is based on the solution of an appropriate integral equation in which the 
unknown function is the difference between the exact current distribution of the finite array and that of the infinite array. 
This unknown current can be interpreted as due to diffracted fields excited by the FWs pertinent to the infinite periodic 
array, allowing an efficient representation in terms of a few entire domain basis function shaped as diffracted rays. This 
method has been applied to the analysis of 2D and 3D arrays of slots [1] [2]. In this paper the analysis of a large array of 
open-ended waveguides is performed, demonstrating the extreme accuracy and the gain in computational time with 
respect to a conventional element by element standard analysis. Moreover a uniform asymptotic representation of the 
array Green’s function (AGF) is introduced, which is accurate also at moderate distance from the array edges and 
vertices. 

FORMULATION 

Consider a finite planar phased array with rectangular lattice of rectangular waveguides on an infinite ground plane 
(Fig. 1). Denote by N , M  and xd , yd  the number of elements and the periodicity in the directions x and y, 
respectively. Without loss of generality, the waveguides are supposed to excited by the dominant transverse electric 
mode TE10. Each aperture has dimensions a and b in the E and H plane, respectively. The array is globally fed with 
constant amplitude and linear phase. 

The formulation for the approach consists in three subsequent steps. First, the continuity of the magnetic field 
integral equation (CMFIE) is derived for the array under investigation. To this end, the equivalence theorem is applied, 
covering the apertures with an electric conductor with two magnetic current distributions ),( yxM±  on the two opposite 
sides. These distributions have equal amplitude and reverse sign in order to ensure the continuity of the tangential 
component of the electric field. The CMFIE is written as 
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Fig. 1 Finite phased array of rectangular waveguides on an infinite ground-plane (inside the dashed line). The actual 
array is extended to construct the infinite periodic array through the apertures outside the dashed line. The region 
composed by the summation of the apertures inside (outside) the dashed line is denoted by A (A*). 
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where )(MHwg
t  and )(MHhs

t  are the tangential magnetic fields produced by M  in the internal (short-circuited 

waveguide) and external (grounded half-space) regions, respectively, imp
tH  is the tangential impressed magnetic field 

and Aχ  denotes the characteristic function of the radiating region A: 1=Aχ  on A, 0=Aχ  elsewhere. 
Next, we construct an auxiliary infinite array that coincides with the actual finite array on it, and realizes the regular 

periodic continuation outside (Fig. 1). The CMFIE is formulated for the infinite array as 
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where ** AAAA χχχχ +== +∞  is the characteristic function of the apertures of the infinite array, and A* denotes 
the radiating surface of the complementary array (Fig. 1). 

Finally, we introduce a fringe magnetic current distribution d
AMχ  as the difference  between the magnetic current 

MAχ  of the finite array and the magnetic current ∞MAχ  of the infinite array, windowed on the actual finite array; i.e. 

 ∞+= MMM A
d

AA χχχ . (3) 

This term describes the perturbation on the global current of the actual finite array, with respect to the infinite array 
solution. Using (3) in (1) and subtracting (2) from (1), leads to 
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Equation (4) is referred to as Fringe Integral Equation (FIE). This equation interprets the fringe current d
AMχ  as the 

current deformation, with respect to the infinite array current, that ensures the continuity condition in the region A. This 
contribution is necessary to compensate for the absence of the field radiated by the current ∞M*Aχ  distributed on the 
complementary array. 

SOLUTION SCHEME 

The solution procedure is divided into two steps. First, the infinite array equation is solved via a conventional 
Method of Moment (MoM). Then, the infinite array solution is used to construct the forcing term of the FIE. This latter 
is solved applying an hybrid high frequency-MoM approach. 

In the hypothesis of periodic geometry and excitation, the CMFIE (2) for the infinite array can be solved invoking 
the Floquet theorem. The magnetic current, except for a phase shift, is a periodic function in x and y, so that the analysis 
may be reduced to that for a single reference cell by representing both the currents and the associated fields as a 
summation of Floquet waves. The unknown magnetic current ∞M  on the reference cell is expanded in terms of modal 
basis functions and the integral equation (2) is solved applying the Galerkin’s method. 

The second step of the procedure is the solution of the FIE to calculate the fringe current d
AMχ  from which the 

total current is easily obtained by (3). The equivalent magnetic current of the infinite array is used to construct the 
forcing term of the FIE, i.e., )( *

∞MH A
hs
tA χχ . The high-frequency representation of this term provides a guideline for 

the subsequent expansion of d
AMχ  in terms of basis functions. The field )( *

∞MH A
hs
tA χχ  can be naturally 

associated with FW edge and vertex diffraction at the boundary of the radiating surface, that is the complementary 
infinite array. In order to define rigorously these diffraction contributions, it is necessary to decompose the 
complementary array in a certain number of arrays of small elements. Approximating each element with an elementary 
magnetic dipole with the proper equivalent moment, allows one to the calculation of the array Green’s function (AGF) 
of the complementary array. The AGF can be represented as the radiation from equivalent FW current sheets extending 
continuously all over the complementary surface. The asymptotic treatment of each FW aperture leads to a spatially 
truncated version of the infinite array FW expansion, plus FW-excited diffracted contribution from the edges and the 
vertices of the array. In particular, for observation points lying on the array aperture the FW contribution vanishes. 
Using the locality principle for high frequency phenomena, the edge and corner diffraction coefficients can be derived 
from canonical problems, such as the semi-infinite array of dipoles [4][5] or a sectoral array of dipoles [6]. Following 



the physical interpretation of the forcing term, the unknown magnetic current d
AMχ  is efficiently expanded in terms 

of a few global domain functions which are shaped as FW-induced diffracted rays. In particular each function has the 
structure of second order edge diffracted rays, with the pertinent shadow boundaries which truncate their existence 
domain, plus two vertex diffracted rays that provide a uniform continuity to the whole function. The diffracted ray 
contains transition functions that ensure the proper ray spreading behavior when the relevant FW is near to cut-off [1]. 
A few number of diffracted rays is necessary to accurately describe the fringe current, typically two per edge. The 
global domain functions modulate the current distribution on each aperture, represented in terms of rectangular 
waveguide modes. Testing the field continuity (4) with proper weight functions, leads to a linear system whose 
dimensions are completely independent by the number of elements of the array. 

NUMERICAL RESULTS 

Results are presented for the analysis of a 2020 ×  elements array in case of broadside and 20o E-plane scan; the 
element dimensions and periodicity are λ5714.0=a , λ254.0=b  and λ620.0=xd , λ290.0=yd , respectively. 
Twenty modes are retained in the basis expansion of the infinite array magnetic current, while the fringe current is 
represented using two diffracted rays per edge, modulating the TE10 mode in the case of broadside beam and TE10, TE01 
in the case of the E-plane tilted beam. A reference solution has been obtained through a standard full-wave element by 
element analysis with 6 modal basis function per aperture (TE10, TE01, TE20, TE11, TM11, TE30). 

In Fig. 2 and Fig. 3, the magnitude of the reflection coefficients is shown for the apertures on the central column of 
the array, in the cases of broadside and 20o E-plane tilted beam pointing, respectively. A good agreement is obtained for 
all the elements in both cases. Following the FW diffraction representation one can interpret the oscillations of the 
reflection coefficient amplitude as established by the interference between each FW aperture field and its corresponding 
diffracted ray. In Fig. 4 the magnitude of the co-polar component of the far field is shown for both the previous cases. 
The fields obtained from the T(FW)2 approach and the element by element approach superimpose. It is worth noting 
that, for the array analyzed, the computational time with the T(FW)² method is about 1/50 with respect to that of the 
conventional element by element approach. 

CONCLUSIONS 

An hybrid high frequency-MoM method has been proposed for the analysis of large periodic arrays of open ended 
waveguides. This method is quite general and may be generalized to other types of array elements [2]. Starting from the 
solution for the infinite array, a suitable fringe integral equation has been formulated, which describes the edge effects 
on the current of the actual finite array. This perturbation is interpreted in terms of FW-induced diffraction from the 
edges and the vertices of the array. This allows an efficient representation of the unknown fringe current in terms of a 
small number of basis functions with domain on the entire array, which are shaped as diffracted rays. Thus, the 
dimension of linear system to be solved is completely independent from the whole number of elements of the array, 
with the consequent gain of calculation time. 
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Fig. 2: Magnitude of the reflection coefficient for the 
apertures on the central column of the array, in case of 
broadside beam pointing 
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Fig. 3: Magnitude of the reflection coefficient for the 
apertures on the central column of the array, in case of 
20o E-plane scan. 
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Fig. 4 Magnitude of the E-plane co-polar component of the radiated magnetic field. The full wave solution (continuous 
line, which identify both the T(FW)² and the element by element standard analysis ) is compared to that obtained by 
windowing the infinite array current to the actual array (dashed line); (a) broadside beam, (b) 20o E-plane tilted beam. 
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