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A periodic array of cylindrical objects is widely used as the wavelength selective or po-
larization selective components in microwave, millimeter-wave and optical wave region. There
have been extensive theoretical investigations on the electromagnetic scattering by the periodic
array during the past few decades. In this paper, the scattering from a two-dimensional pe-
riodic array of anisotropic cylindrical layered objects is investigated. The formulation process
is similar to that of the Fourier series expansion method [2,3]. We consider a set of layers
uniform in the direction parallel to the axes of cylinders. The electromagnetic fields are ex-
panded according to Floquet’s theorem, and the wave propagation in each layer is described
using a matrix algebra. On the other hand, the boundary condition between the layers can be
fulfilled by equating the expansion coefficients associated with the tangential components of
electromagnetic fields since we use the common basis for all layers.

The structure under consideration is schematically shown in Fig. 1. The cylindrical objects
with radius a are placed periodically in a surrounding isotropic media with permittivity ¢y and
permeability ug so that the axes of the cylinders are parallel to the z-axis. The periodicity axes
z and v with the angle o are taken papendicular to the z-axis, and then the primitive cell of
the periodicity is parallelogram with the side lengths of [ and l,,. Each cylindrical objects has
a layered structure consisting of M anisotropic media in which the thickness of the vth-layer
(v=1,---,M) is z, — z,-1. Bach layer is uniform in the z-direction, and the permittivity
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Figure 2: Incident wave.

Figure 1: Top and side views of the two-
dimensional periodic array of anisotropic
cylindrical objects under consideration.
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tensor distribution £*)(z,y) and the permeability tensor distribution 7z®*)(z,y) of the layer v
(2,-1 < z < 2z,) can be expressed by the following matrices:
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in the Cartesian coordinate system. We view the scattering characteristics for the incident
plane wave with the incident angles 6 (0 < 8 < 7/2) and ¢ (0 < ¢ < 27) as shown in Fig. 2
and the time dependence of e/,

According to Floquet’s theorem, the electromagnetic fields can be expressed in terms of
space harmonic waves as follows:

en(7,9,2) =P (2,9) (2),  hyla,y,2) = '@, 9) hylz)  (p=2,p) 3)
with
(’/’(‘”’y))m = (2, y) = m o~ d(0z(m) ztoy(m)y) (4)
oz(m) = ko sinf cos ¢ + nz(m) 2l_7r (5)
oy(m) = ko sind sinp — ng(m) l—: cot @ + ny(m) 21—: cosec o (6)

where €,(z) and isz(z) are expansion coefficient vectors of the p-components (p = z,y) of
electric and magnetic fields, 1(x, y) is the orthonormal expansion basis, ()m denotes the m-th
component of a vector, and kg is the wavenumber in free space. n,(m) and n,(m) is an integer
function set which is uniquely determined by the integer m, and they indicate the orders of
a space harmonic wave in the z and u direction, respectively. For numerical calculations, the
infinite series expansion (3) have to be approximated by truncated expansion. We consider the
space harmonic waves of —N, - - , Nyth-orders for the z-direction and —N,, -+, Nyth-orders
for the u-direction, and then we use the following integer functions:
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where quotient(m,n) gives the integer quotient of m and n and mod(m, n) gives the remainder
on division of m by n. Equation (3) is substituted into Maxwell’s equations for the layer v
(v = 1,---, M). Utilizing the orthonormality among the basis functions, we obtain a set of
linear equations for the expansion coeflicients as follows:
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where p,q = z,, z, ()mn denotes the (m,n)-component of a matrix, d,,, is Kronecker’s delta,

and the asterisk denotes the complex conjugate.

The eigenvalues ,8,(,1: ) of matrix C) and the associated eigenvectors pg{) determine the prop-

agation constants for the z-direction and the field distribution of the eigenmodes, respectively.
The solutions to Eq. (8) are expressed as
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This equation gives the representation of the electromagnetic wave propagation in each uni-
form layer, and yields the relation between f(z,) and f(z,_1) which determine the tangential
components of electromagnetic fields at the upper and lower surface of the layer v. On the
other hand, we should note that the expansion coeflicient vector f(z) is continuous at the
boundaries between the layers, because we use common basis for all layers and f(z) consists of
the expansion coefficients of the tangential components of electromagnetic fields. The relation
(10) is successively applied for all layers, and then we can derive an equation that relates the
expansion coefficients at the upper end (z = zy) to those at the lower end (z = zy) as follows:
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The layers 0 (z > z9) and M + 1 (2 < z)s) are isotropic and homogeneous, and therefore
the space harmonic waves are not coupled to each other. Then, we can easily calculate the
matrices P9 and P(M+1) and obtain the analytical expressions. We chose these matrices so
as to satisfy the following relation:
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where ag,/g, a((i';)), a%, and ag}), indicate the amplitude vectors of the s-polarized downward,

p-polarized downward, s-polarized upward, and p-polarized upward waves, respectively. Using
Eq. (14), we obtain the following relation from Eq. (15):
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In this equation, afi?z(zo), a,(fl),(zo), a&]};Hl)(zM), and aq(%H)(zM) give the amplitudes of in-

coming waves. Since we consider that the plane wave is incident from the layer 0 (z > zp), the
components of a‘(iog(zo) and ag);(zo) except for those associated with the fundamental space
harmonic waves are zero. On the other hand, there is no reflection from the layer M + 1

(z < zp), and then the boundary conditions are given by aSLI,\fH)(zM) = a%[H)(zM) = 0.

These conditions are used in Eq. (15) to determine the amplitudes aq(fz (20) and agf,),(zg) for the
reflected waves and a((i],\gﬂ)(zM) and a((i]’\;fﬂ)(zM) for the transmitted waves.

We have presented a numerical approach for the electromagnetic scattering from a two-
dimensional periodic array of anisotropic cylindrical layered objects. The formulation is based
on Floquet’s theorem, and the electromagnetic fields are expanded by the space harmonic waves.
The common expansion basis is used for all layers and the boundary condition between the
layers are satisfied by equating the expansion coefficients. This greatly simplifies the numerical
procedure and yields wide applicability.

References

[1] R. Petit, Ed., Electromagnetic Theory of Gratings, Springer-Verlag, 1980.

[2] Y. Yamakita, K. Matsumoto, and K. Rokushima, “Analysis of Discontinuities in Anisotropic
Dielectric Waveguides,” IEICE Technical Report, EMT-93-87, pp. 81-90, 1993 (in
Japanese).

[3] K. Yasumoto, H. Maeda, and S. Morita, “Numerical Analysis of Transitions and Discon-
tinuities in Optical Waveguides,” 1996 Asia-Pacific Microwave Conf. Proc., pp. 647-650,
1996.



